Skip to main content

Advertisement

Log in

Comparative proteome analysis of the response of ramie under N, P and K deficiency

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Ramie is an important natural fiber. There has been little research on the molecular mechanisms of ramie related to the absorption, utilization and metabolism of nitrogen (N), phosphorus (P) and potassium (K). One approach to reveal the mechanisms of N, P and K (NPK) utilization and metabolism in ramie is comparative proteome analysis. The differentially expressed proteins in the leaves of ramie were analyzed by proteome analysis after 6 days of N- and K-deficient treatments and 3 days of P-deficient treatment using MALDI-TOF/TOF mass spectrometry and 32, 27 and 51 differential proteins were obtained, respectively. These proteins were involved in photosynthesis, protein destination and storage, energy metabolism, primary metabolism, disease/defense, signal transduction, cell structure, transcription, secondary metabolism and protein synthesis. Ramie responded to NPK stress by enhancing secondary metabolism and reducing photosynthesis and energy metabolism to increase endurance. Specifically, ramie adapted to NPK deficiency by increasing signal transduction pathways, enhancing the connection between glycolysis and photosynthesis, promoting the intracellular flow of carbon and N; promoting the synthesis cysteine and related hormones and upregulating actin protein to promote growth of the root system. The experimental results provide important information for further study on the high-efficiency NPK utilization mechanism of ramie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

CHAPS:

3-[(3-cholamidopropyl) dimethylammonio] propanesulfonic acid

DTT:

Dithiothreitol

HSP:

Heat shock protein

IAA:

Iodoacetamide

IEF:

Isoelectric focusing

IPG:

Immobilized pH gradient

MALDI:

Matrix-assisted laser dissociation ionization

MS:

Mass spectrometry

PMSF:

Phenylmethanesulfonyl fluoride

pI:

Isoelectric point

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

SPAD:

Soil and plant analyzer development

TCA:

Trichloroacetic acid

TOF:

Time of flight

References

  • Augustine RC, Vidali L, Kleinman KP, Bezanilla M (2008) Actin depolymerizing factor is essential for viability in plants, and its phosphor regulation is important for tip growth. Plant J 54:863–875

    Article  CAS  PubMed  Google Scholar 

  • Bahrman N, Le Gouis J, Negroni L, Amilhat L, Leroy P, Lainé AL, Jaminon O (2004) Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics 4:709–719

    Article  CAS  PubMed  Google Scholar 

  • Bahrman N, Gouy A, Devienne-Barret F, Hirel B, Vedele F, Gouis JL (2005) Differential change in root protein patterns of two wheat varieties under high and low nitrogen nutrition levels. Plant Sci 168:81–87

    Article  CAS  Google Scholar 

  • Bao Y, Hu G, Flagel LE, Salmon A, Bezanilla M, Paterson AH, Wang Z, Wendel JF (2011) Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proc Natl Acad Sci USA 108:21152–21157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bevan M, Bancroft I, Bent E et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  CAS  PubMed  Google Scholar 

  • Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem 280:38803–38813

    Article  CAS  PubMed  Google Scholar 

  • Boutilier RG, St-Pierre J (2000) Surviving hypoxia without really dying. Comp Biochem Phys A 126:481–490

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary B, Hovav R, Rapp R, Verma N, Udall JA, Wendel JF (2008) Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense. Evol Dev 10:567–582

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Cui Q, Liang C, Sun L, Tian J, Liao H (2011) Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Proteomics 11:4648–4659

    Article  CAS  PubMed  Google Scholar 

  • Chepyshko H, Lai CP, Huang LM, Liu JH, Shaw JF (2012) Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. BMC Genom 13:309

    Article  CAS  Google Scholar 

  • Chevalier F, Rossignol M (2011) Proteomic analysis of Arabidopsis thaliana ecotypes with contrasted root architecture in response to phosphate deficiency. J Plant Physiol 168:1885–1890

    Article  CAS  PubMed  Google Scholar 

  • Cho JI, Ryoo N, Eom JS et al (2009) Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol 149:745–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng G, Liu L, Wang H, Lao C, Wang B, Zhu C, Peng D (2013) Establishment and optimization of two-dimensional electrophoresis (2-DE) technology for proteomic analysis of ramie. Int J Agric Biol 15:570–574

    CAS  Google Scholar 

  • Evans JR, Terashima I (1987) Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach. Aust J Plant Physiol 14:59–68

    Article  CAS  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    Article  CAS  PubMed  Google Scholar 

  • Gu YQ, Holzer FM, Walling LL (1999) Over expression, purification and biochemical characterization of the wond-induced leucyl aminopeptidase of tomato. Eur J Biochem 263:726

    Article  CAS  PubMed  Google Scholar 

  • Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Pretova A (2001) High resolution two dimensional electrophoresis separation of proteins from metal stressed rice (Oryza sativa L.) leaves: drastic reductions/fragmentation of ribulose 1, 5 bisphosphate carboxylase/oxygenase and induction of stress related proteins. Electrophoresis 22:2824–2831

    Article  CAS  PubMed  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Hosseini Salekdeh G (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    Article  CAS  PubMed  Google Scholar 

  • Hancock JT, Henson D, Nvirenda M, Desikan R, Harrison J, Lewis M, Hughes J, Neill SJ (2005) Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Biochem 43:828–835

    Article  CAS  PubMed  Google Scholar 

  • Horton P (2000) Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot 51:475

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Yalpani N, Briggs SP, Johal GS (1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095–1105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jang JC, León P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia RQ, Shi NM, Chen BQ (1989) Study on effect of potassium on physiological and yield of ramie. Plant Fiber Sci China 4:27–31

    Google Scholar 

  • Jie YC, Wang CY, Yan WG (1993) High yield way of ramie. Life Word 6:2

    Google Scholar 

  • Kang JG, Pyo YJ, Cho JW, ChoM H (2004) Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency in Arabidopsis thaliana. Proteomics 4:3549–3559

    Article  CAS  PubMed  Google Scholar 

  • Katayama H, Nagasu T, Oda Y (2001) Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Sp 15:1416–1421

    Article  CAS  Google Scholar 

  • Kihara T, Wada T, Suzuki Y, Hara T, Koyama H (2003) Alteration of citrate metabolism in cluster roots of white lupin. Plant Cell Physiol 44:901–908

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Wang Y, Lee CH et al (2011) A comparative proteomics survey of proteins responsive to phosphorous starvation in roots of hydroponically-grown rice seedlings. J Korean Soc Appl Bi 54:667–677

    Article  CAS  Google Scholar 

  • Kong WZ, Xiong YH, Hu XL (2011) Survey on chemical constituents and bioactivity of medicinal plants of Boenmeria. Medical Inform 2:763–764

    Google Scholar 

  • Krouk G, Lacombe B, Bielach A et al (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937

    Article  CAS  PubMed  Google Scholar 

  • Li K, Xu C, Zhang K, Yang A, Zhang J (2007) Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics 7:1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Li KP, Xu CZ, Li ZX, Zhang KW, Yang AF, Zhang JR (2008) Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant J 55:927–939

    Article  CAS  PubMed  Google Scholar 

  • Li CD, Cui GX, Xie N, Ding SS, Chen BB, Bai YC (2011) Preliminary study on relationship between SPAD value and nitrogen content in ramie leaves. Plant Fiber Sci China 33:20–23

    CAS  Google Scholar 

  • Liu LJ, Chen HQ, Dai XB, Wang H, Peng DX (2012) Effect of planting density and fertilizer application on fiber yield of ramie (Boehmeria nivea). J Int Agric 11:1199–1206

    Article  Google Scholar 

  • Luo S, Ishida H, Makino A, Mae T (2002) Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1, 5-bisphosphate carboxylase close to the active site. J Biol Chem 277:12382–12387

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maathuis FJM, Ichida AM, Sanders D, Schroeder JI (1997) Roles of higher plant K+ channels. Plant Physiol 114:1141–1149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mock HP, Grimm B (1997) Reduction of uroporphyrinogen decarboxylase by antisense RNA expression affects activities of other enzymes involved in tetrapyrrole biosynthesis and leads to light-dependent necrosis. Plant Physiol 113:1101–1112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Møller AL, Pedas PAI, Andersen B, Svensson B, Schjoerring JK, Finnie C (2011) Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant, Cell Environ 34:2024–2037

    Article  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photo system II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ou-Yang ZS, Zhou ZD, Cui GX, Li ZD (1989) Effect of potassium on yield and quality of ramie fiber and carbon nitrogen metabolism. Plant Fiber Sci China 11:25–29

    Google Scholar 

  • Prinsi B, Negri A, Pesaresi P, Cocucci M, Espen L (2009) Evaluation of protein pattern changes in roots and leaves of Zea mays plants in response to nitrate availability by two-dimensional gel electrophoresis analysis. BMC Plant Biol 9:113

    Article  PubMed Central  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Salekdeh GhH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Shibato J, Kim DW, Oh MK, Kim MK, Shim IS, Iwahashi H, Masuo Y, Rakwal R (2009) Gel-based proteomics approach for detecting low nitrogen-responsive proteins in cultivated rice species. Physiol Mol Biol Plant 15:31–41

    Article  Google Scholar 

  • Song Y, Masison DC (2005) Independent regulation of Hsp70 and Hsp90 chaperones by Hsp70/Hsp90-organizing protein Sti1 (Hop1). J Biol Chem 280:34178–34185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  CAS  PubMed  Google Scholar 

  • Tatar Ö, Ilker E, Tonk FA, Aygün H, Çaylak Ö (2010) Impact of different nitrogen and potassium application on yield and fiber quality of ramie (Boehmeria nivea). Int J Agric Biol 12:369–372

    Google Scholar 

  • Torabi S, Wissuwa M, Heidari M, Naghavi MR, Gilany K, Hajirezaei MR, Omidi M, Bahman YS, Ismail AM, Salekdeh GH (2009) A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics 9:159–170

    Article  CAS  PubMed  Google Scholar 

  • Toth VR, Mészaros I, Veres S, Nagy J (2002) Effects of the available nitrogen on the photosynthetic activity and xanthophyll cycle pool of maize in field. J Plant Physiol 159:627–634

    Article  CAS  Google Scholar 

  • Varshvsky A (1996) The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci USA 9:12142

    Article  Google Scholar 

  • Wang CT, Li ZD, Yu TW, Liu MS, Xiao ZP, Cui GX, Xue ND, Li GC, Deng MQ (1994) Fertilization program in fine quality and high yield of ramie and its application technique. J Hunan Agric Univ 20:318–324

    Google Scholar 

  • Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Woodson WR, Park KY, Drory A, Larsen PB, Wang H (1992) Expression of ethylene biosynthetic-pathway transcripts in senescing carnation flowers. Plant Physiol 99:526–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Fan X, Miller A (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Xu L, Cui H, Zhong B, Liu G, Shi H (2013) Low nitrogen-induced expression of cyclophilin in Nicotiana tabacum. J Plant Res 126:121–129

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, Bauermann RU, Morales F (2006) Effects of growing site and nitrogen fertilization on biomass production and lignin content of linseed (Linum usitatissimum L.). J Sci Food Agric 86:415–419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant from National science and technology support (2010BAD02B01), the National Natural Science Foundation of China (31000731) and China Agriculture Research System (CARS-19-E12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Xiang Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, G., Liu, L.J., Zhong, X.Y. et al. Comparative proteome analysis of the response of ramie under N, P and K deficiency. Planta 239, 1175–1186 (2014). https://doi.org/10.1007/s00425-014-2040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2040-3

Keywords

Navigation