Skip to main content
Log in

Phosphorylation of d-allose by hexokinase involved in regulation of OsABF1 expression for growth inhibition in Oryza sativa L.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We previously reported that a rare sugar d-allose, which is the d-glucose epimer at C3, inhibits the gibberellin-dependent responses such as elongation of the second leaf sheath and induction of α-amylase in embryo-less half seeds in rice (Fukumoto et al. 2011). d-Allose suppresses expressions of gibberellin-responsive genes downstream of SLR1 protein in the gibberellin-signaling through hexokinase (HXK)-dependent pathway. In this study, we discovered that d-allose induced expression of ABA-related genes including OsNCED1-3 and OsABA8ox1-3 in rice. Interestingly, d-allose also up-regulated expression of OsABF1, encoding a conserved bZIP transcription factor in ABA signaling, in rice. The d-allose-induced expression of OsABF1 was diminished by a hexokinase inhibitor, d-mannoheptulose (MNH). Consistently, d-allose also inhibited Arabidopsis growth, but failed to trigger growth retardation in the glucose-insensitive2 (gin2) mutant, which is a loss-of-function mutant of the glucose sensor AtHXK1. d-Allose activated AtABI5 expression in transgenic gin2 over-expressing wild-type AtHXK1 but not in gin2 over-expressing the catalytic mutant AtHXK1S177A, indicating that the d-allose phosphorylation by HXK to d-allose 6-phosphate (A6P) is the first step for the up-regulation of AtABI5 gene expression as well as d-allose-induced growth inhibition. Moreover, overexpression of OsABF1 showed increased sensitivity to d-allose in rice. These findings indicated that the phosphorylation of d-allose at C6 by hexokinase is essential and OsABF1 is involved in the signal transduction for d-allose-induced growth inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

A6P:

d-Allose 6-phosphate

GA:

Gibberellin

gin2 :

Glucose-insensitive2

HXK:

Hexokinase

MNH:

d-Mannoheptulose

References

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–943

    Article  PubMed  Google Scholar 

  • Baena-González E, Rolland F, Sheen J (2008) KIN10/11 are master regulators of the convergent stress transcriptome. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th International Congress on photosynthesis, vol I. Springer, pp 1337–1344

  • Bolouri-Moghaddam MR, Van den Ende W (2012) Sugars and plant innate immunity. J Exp Bot 63:3989–3998

    Article  PubMed  CAS  Google Scholar 

  • Brocard IM, Lynch TJ, Finkelstein RR (2002) Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 129:1533–1543

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Jones AM (2004) AtRGS1 function in Arabidopsis thaliana. Methods Enzymol 389:338–350

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA 95:4784–4788

    Article  PubMed  CAS  Google Scholar 

  • Cho YH, Yoo SD (2011) Signaling role of fructose mediated by FINS/FBP in Arabidopsis thaliana. PLoS Genet 7:e1001263

    Article  PubMed  CAS  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  PubMed  CAS  Google Scholar 

  • Cho JI, Ryoo N, Eom JS, Lee DW, Kim HB, Jeong SW, Lee YH, Kwon YK, Cho MH, Bhoo SH et al (2009) Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol 149:745–759

    Article  PubMed  CAS  Google Scholar 

  • Ding X, Richter T, Chen M, Fujii H, Seo YS, Xie M, Zheng X, Kanrar S, Stevenson RA, Dardick C et al (2009) A rice kinase-protein interaction map. Plant Physiol 149:1478–1492

    Article  PubMed  CAS  Google Scholar 

  • Eveland AL, Jackson DP (2011) Sugars, signaling, and plant development. J Exp Bot 63:3367–3377

    Article  PubMed  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto T, Kano A, Ohtani K, Yamasaki-Kokudo Y, Kim BG, Hosotani K, Saito M, Shirakawa C, Tajima S, Izumori K et al (2011) Rare sugar d-allose suppresses gibberellin signaling through hexokinase-dependent pathway in Oryza sativa L. Planta 234:1083–1095

    Article  PubMed  CAS  Google Scholar 

  • Gazzarrini S, McCourt P (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol 4:387–391

    Article  PubMed  CAS  Google Scholar 

  • Gibson SI (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol 124:1532–1539

    Article  PubMed  CAS  Google Scholar 

  • Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signaling network. J Exp Bot 55:253–264

    Article  PubMed  CAS  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    Article  PubMed  CAS  Google Scholar 

  • Hanson J, Smeekens S (2009) Sugar perception and signaling: an update. Curr Opin Plant Biol 12:562–567

    Article  PubMed  CAS  Google Scholar 

  • Hayter AJ (1984) A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is conservative. Ann Stat 12:61–75

    Article  Google Scholar 

  • Hoffmann-Benning S, Kende H (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol 99:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Hofmann M, Roitsch T (2000) The hexokinase inhibitor glucosamine exerts a concentration dependent dual effect on protein kinase activity in vitro. J Plant Physiol 157:13–16

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679

    PubMed  CAS  Google Scholar 

  • Jang JC, Sheen J (1997) Sugar sensing in higher plants. Trends Plant Sci 2:208–213

    Article  Google Scholar 

  • Kano A, Gomi K, Yamasaki-Kokudo Y, Satoh M, Fukumoto T, Ohtani K, Tajima S, Izumori K, Tanaka K, Ishida Y et al (2010) A rare sugar, d-allose, confers resistance to rice bacterial blight with upregulation of defense-related genes in Oryza sativa. Phytopathology 100:85–90

    Article  PubMed  CAS  Google Scholar 

  • Kano A, Hosotani K, Gomi K, Yamasaki-Kokudo Y, Shirakawa C, Fukumoto T, Ohtani K, Tajima S, Izumori K, Tanaka K et al (2011) d-Psicose induces upregulation of defense-related genes and resistance in rice against bacterial blight. J Plant Physiol 168:1852–1857

    Article  PubMed  CAS  Google Scholar 

  • Kato-Noguchi H, Takaoka T, Izumori K (2005) Psicose inhibits lettuce root growth via a hexokinase-independent pathway. Physiol Plant 125:293–298

    Article  CAS  Google Scholar 

  • Kato-Noguchi H, Takaoka T, Izumori K (2011) Effect of the d-glucose analog, d-allose, on the growth of Arabidopsis roots. Weed Biol Manag 11:7–11

    Article  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  PubMed  CAS  Google Scholar 

  • Leon P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua N-H (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    Article  PubMed  CAS  Google Scholar 

  • Meinhard M, Grill E (2001) Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett 508:443–446

    Article  PubMed  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M et al (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase. Theor Appl Genet 99:383–390

    Article  PubMed  CAS  Google Scholar 

  • Pego JV, Weisbeek PJ, Smeekens SC (1999) Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol 119:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Ramon M, Rolland F, Sheen J (2008) Sugar sensing and signaling. Arabidopsis B 6:e0117. doi:10.1199/tab.0117

    Google Scholar 

  • Ribaut JM, Martin HV, Pilet PE (1996) Abscisic acid turnover in intact maize roots: a new approach. J Plant Physiol 148:761–764

    Article  CAS  Google Scholar 

  • Rolland F, Baena-González E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M et al (2007) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol 48:287–298

    Article  PubMed  CAS  Google Scholar 

  • Sasamoto H, Ogita S, Wakita Y, Fukui M (2002) Endogenous levels of abscisic acid and gibberellins in leaf protoplasts competent for plant regeneration in Betula platyphylla and Populus alba. Plant Growth Reg 38:195–201

    Article  CAS  Google Scholar 

  • Sheen J, Zhou L, Jang JC (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2:410–418

    Article  PubMed  CAS  Google Scholar 

  • Shobbar ZS, Oane R, Gamuyao R, De Palma J, Malboobi MA, Karimzadeh G, Javaran MJ, Bennett J (2008) Abscisic acid regulates gene expression in cortical fiber cells and silica cells of rice shoots. New Phytol 178:68–79

    Article  PubMed  CAS  Google Scholar 

  • Sinha AK, Hofmann MG, Romer U, Kockenberger W, Elling L, Roitsch T (2002) Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiol 128:1480–1489

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S (1998) Sugar regulation of gene expression in plants. Curr Opin Plant Biol 1:230–234

    Article  PubMed  CAS  Google Scholar 

  • Teale WD, Ditengou FA, Dovzhenko AD, Li X, Mokendijk AM, Ruperti B, Paponov I, Palme L (2008) Auxin as a model for the integration of hormonal signaling processing and transduction. Mol Plant 1:229–237

    Article  PubMed  CAS  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976

    Article  PubMed  CAS  Google Scholar 

  • Toroser D, Plaut Z, Huber SC (2000) Regulation of a plant SNF1-related protein kinase by glucose-6-phosphate. Plant Physiol 123:403–412

    Article  PubMed  CAS  Google Scholar 

  • Welsch R, Wüst F, Bär C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147:367–380

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Choi D (2006) Characterization of genes encoding ABA 8′-hydroxylase in ethylene-induced stem growth of deepwater rice (Oryza sativa L.). Biochem Biophys Res Commun 350:685–690

    Article  PubMed  CAS  Google Scholar 

  • Yasuno S, Murata T, Kokubo K, Yamaguchi T, Kamei M (1997) Two-mode analysis by high-performance liquid chromatography of p-aminobenzoic ethyl ester-derivatized monosaccharides. Biosci Biotech Biochem 61:1944–1946

    Article  CAS  Google Scholar 

  • Zhang Y, Liu Z, Wang L, Zheng S, Xie J, Bi Y (2010) Sucrose induced hypocotyl elongation of Arabidopsis seedlings in darkness depends on the presence of gibberellins. J Plant Physiol 167:1130–1136

    Article  PubMed  CAS  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rice Genome Resource Center at National Institute of Agrobiological Sciences (NIAS, Tsukuba, Japan) for providing full-length cDNA used in this study. This study was supported by the Programme for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Akimitsu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2013_1853_MOESM1_ESM.tif

Supplemental Fig. S1 Effect of 6-deoxy-d-allose on growth rate of rice seedlings. One microliter of 6-deoxy-d-allose (6-DA) solutions (10, 100, 500 and 1000 mM) was applied as the same methods described in Fig 1. The second sheath and shoot lengths were measured at 6 days after treatment, and compared to that of the water-treated control. All plants were grown at 25°C in growth chambers after the sugar treatment. Each datum is the average of 20 seedlings with SD values, and no statistical differences (P<0.05) found among respective data as indicated by same letter (TIFF 156 kb)

425_2013_1853_MOESM2_ESM.tif

Supplemental Fig. S2 HPLC detection of d-allose and d-allose 6-phosphate in extracts from Arabidopsis leaves. Total protein was extracted from plants (100 mg FW) of wild type Arabidopsis (WT), gin2 mutant, transgenic gin2 plant over-expressing normal AtHXK (gin2/35S::AtHXK1), and transgenic gin2 plant over-expressing point mutated AtHXK1 at S177A (gin2/35S::S177A) as described in Fig. 5, which was grown for 10 days on MS medium supplemented with 1 % sucrose. d-Allose and A6P were detected after coupled with p-aminobenzoic ethyl ester (ABEE) by the method of Yasuno et al. (1997) with modifications (TIFF 356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukumoto, T., Kano, A., Ohtani, K. et al. Phosphorylation of d-allose by hexokinase involved in regulation of OsABF1 expression for growth inhibition in Oryza sativa L.. Planta 237, 1379–1391 (2013). https://doi.org/10.1007/s00425-013-1853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1853-9

Keywords

Navigation