Skip to main content
Log in

EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

OsERF3 is a transcriptional repressor with an ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif (F/LDLNxxP), which transcriptionally represses the ethylene emission and drought tolerance in rice. However, its molecular mechanism to explore repression function remains unknown. Here, we first revealed that the expression of OsERF3 was induced by drought, salt, ACC and ABA treatment. In addition, it showed a higher expression level in the root and sheath than that in the leaf. Then, we generated transgenic rice overexpressing full-length OsERF3 (OE) and its mutation of EAR motif with the A 680/C substitution (mEAR), respectively. The physiological analyses showed that mEAR lines showed better drought tolerance and more ethylene emission compared with those of OE lines and wild type plants. Consistent with our previous research, the expression of ethylene synthesis genes, including ACO2, ACS2, and ACS6 was down-regulated in OE lines. However, the repression of OsERF3 was eliminated in mEAR lines. Specifically, ACS2 was up-regulated in mEAR lines compared with that in OE lines and WT plants, suggesting that the Leu/Ala substitution within the EAR motif resulted in loss of repression of OsERF3. Thus, our data reveal that the EAR motif is required for OsERF3 to transcriptionally regulate the ethylene synthesis and drought tolerance in rice, providing new insight to the roles of ethylene-response factor proteins in regulating ethylene biosynthesis and stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ERF:

Ethylene-response factor

EAR:

Ethylene-responsive element-binding factor-associated amphiphilic repression

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACO:

ACC oxidase

ACS:

ACC synthase

GUS:

Beta-glucuronidase

ABA:

Abscisic acid

JA:

Jasmonic acid

IAA:

Indole-3-acetic acid

GA:

Gibberellic acid

References

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  PubMed  CAS  Google Scholar 

  • Chen LT, Wu K (2010) Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav 5:1318–1320

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Liu J, Lei G, Liu YF, Li ZG, Tao JJ, Hao YJ, Cao YR, Lin Q, Zhang WK, Ma B, Chen SY, Zhang JS (2009) Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses. Plant Cell Physiol 50:1636–1650

    Article  PubMed  CAS  Google Scholar 

  • Dong CJ, Liu JY (2010) The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biol 10:47

    Article  PubMed  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box mediated gene expression. Plant Cell 12:393–404

    PubMed  CAS  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA 105:16814–16819

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    Article  PubMed  CAS  Google Scholar 

  • Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang CM, He XH, Han Y, Martin GB (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831

    Article  PubMed  CAS  Google Scholar 

  • Hamel LP, Benchabane M, Nicole MC, Major IT, Morency MJ, Pelletier G, Beaudoin N, Sheen J, Seguin A (2011) Stress-responsive mitogen-activated protein kinases interact with the EAR motif of a poplar zinc finger protein and mediate its degradation through the 26S proteasome. Plant Physiol 157:1379–1393

    Article  PubMed  CAS  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    Article  PubMed  CAS  Google Scholar 

  • Jung KH, Seo YS, Walia H, Cao P, Fukao T, Canlas PE, Amonpant F, Bailey-Serres J, Ronald PC (2010) The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. Plant Physiol 152:1674–1692

    Article  PubMed  CAS  Google Scholar 

  • Kagale S, Rozwadowski K (2010) Small yet effective: the ethylene responsive element binding factor-associated amphiphilic repression (EAR) motif. Plant Signal Behav 5:691–694

    Article  PubMed  CAS  Google Scholar 

  • Kagale S, Rozwadowski K (2011) EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6:141–146

    Article  PubMed  CAS  Google Scholar 

  • Kar RK (2011) Plant responses to water stress: role of reactive oxygen species. Plant Signal Behav 6:1741–1745

    Article  PubMed  CAS  Google Scholar 

  • Kim CY, Liu YD, Thorne ET, Yang HP, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang SQ (2003) Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15:2707–2718

    Article  PubMed  CAS  Google Scholar 

  • Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y (2011) The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J 67:472–484

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Zhang L, Yu Y, Quan R, Zhang Z, Zhang H, Huang R (2011) The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Plant J 68:88–99

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 63:3899–3911

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Ju H, Zhou G, Zhu C, Erb M, Wang X, Wang P, Lou Y (2011) An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. Plant J 68:583–596

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    PubMed  CAS  Google Scholar 

  • Pan IC, Li C-W, Su R-C, Cheng C-P, Lin C-S, Chan M-T (2010) Ectopic expression of an EAR motif deletion mutant of SlERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato. Planta 232:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Perez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    Article  PubMed  CAS  Google Scholar 

  • Pirrello J, Prasad N, Zhang W, Chen K, Mila I, Zouine M, Latche A, Pech JC, Ohme-Takagi M, Regad F, Bouzayen M (2012) Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biol 12:190

    Article  PubMed  CAS  Google Scholar 

  • Qi WW, Sun F, Wang QJ, Chen ML, Huang YQ, Feng YQ, Luo XJ, Yang JS (2011) Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiol 157:216–228

    Article  PubMed  CAS  Google Scholar 

  • Rashid M, He GY, Yang GX, Hussain J, Yan X (2012) AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evol Bioinform 8:321–355

    Article  CAS  Google Scholar 

  • Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52:344–360

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Shyu C, Figueroa P, Depew CL, Cooke TF, Sheard LB, Moreno JE, Katsir L, Zheng N, Browse J, Howe GA (2012) JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell 24:536–550

    Article  PubMed  CAS  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    Article  PubMed  CAS  Google Scholar 

  • Van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25:43–53

    Article  PubMed  Google Scholar 

  • Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R (2011) Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One 6:e25216

    Article  PubMed  CAS  Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl):S131–S151

    PubMed  CAS  Google Scholar 

  • Wang Y, Wan L, Zhang L, Zhang Z, Zhang H, Quan R, Zhou S, Huang R (2012) An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol 78:275–288

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao F, Fu XY, Hou XL, Yao QH (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 232:1007

    Article  CAS  Google Scholar 

  • Yaish MW, El-Kereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ (2010) The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet 6:e1001098

    Article  PubMed  Google Scholar 

  • Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Huang R (2010) Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 73:241–249

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhang H, Quan R, Wang XC, Huang R (2009) Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365–377

    Article  PubMed  CAS  Google Scholar 

  • Zhou GA, Chang RZ, Qiu LJ (2010) Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol 72:357–367

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Special Foundation of Transgenic Plants in China (2011ZX001-003) and the National Science Foundation of China (Grant No. 30971542, 31172025 and 31171465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongfeng Huang.

Additional information

H. Zhang and J. Zhang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhang, J., Quan, R. et al. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta 237, 1443–1451 (2013). https://doi.org/10.1007/s00425-013-1852-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1852-x

Keywords

Navigation