Skip to main content
Log in

Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The anatomical localization of caffeine within young Camellia sinensis leaves was investigated using immunohistochemical methods and confocal scanning laser microscopy. Preliminary fixation experiments were conducted with young C. sinensis leaves to determine which fixation procedure retained caffeine the best as determined by high-performance liquid chromatography analysis. High pressure freezing, freeze substitution, and embedding in resin was deemed the best protocol as it retained most of the caffeine and allowed for the samples to be sectioned with ease. Immunohistochemical localization with primary anti-caffeine antibodies and conjugated secondary antibodies on leaf sections proved at the tissue level that caffeine was localized and accumulated within vascular bundles, mainly the precursor phloem. With the use of a pressure bomb, xylem sap was collected using a micro syringe. The xylem sap was analyzed by thin-layer chromatography and the presence of caffeine was determined. We hypothesize that caffeine is synthesized in the chloroplasts of photosynthetic cells and transported to vascular bundles where it acts as a chemical defense against various pathogens and predators. Complex formation of caffeine with chlorogenic acid is also discussed as this may also help explain caffeine’s localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HPF:

High-pressure freezing

FS:

Freeze substitution

FD:

Freeze drying

CSLM:

Confocal scanning microscopy

EtOH:

Ethanol

HPLC:

High-performance liquid chromatography

References

  • Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Al Khesraji TO, Lösel DM, Gay JL (1980) The infection of vascular tissue in leaves of Tussilago farfara L. by pycnial-aecial stages of Puccinia poarum Niel. Physiol Plant Pathol 17:193–197

    Article  Google Scholar 

  • Alcantara J, Bird DA, Franceschi VR, Facchini PJ (2005) Sanguinarine biosynthesis is associated with the endoplasmic reticulum in cultured opium poppy cells after elicitor treatment. Plant Physiol 138:173–183

    Article  PubMed  CAS  Google Scholar 

  • Argyropoulou C, Akoumianaki-Ioannidou A, Christodoulakis NS, Fasseas C (2010) Leaf anatomy and histochemistry of Lippia citriodora (Verbenaceae). Aust J Bot 58:398–409

    Article  Google Scholar 

  • Bäumel P, Jeschke WD, Rath N, Czygan F-C, Proksch P (1995) Modelling of quinolizidine alkaloid net flows in Lupinus albus and L. albus and the parasite Cuscuta reflexa: new insights into the site of quinolizidine alkaloid synthesis. J Exp Bot 46:1721–1730

    Article  Google Scholar 

  • Bottega S, Garbahj F, Pagni AM (2004) Hypericum elodes L. (Clusiaceae): the secretory structures of the flower. Isr J Plant Sci 52:51–57

    Article  Google Scholar 

  • Bringmann G, Koppler D, Wiesen B, Francois G, Sankara Narayanan AS, Almeida MR, Schneider H, Zimmermann U (1996) Ancistroheynine A, the first 7,8′-coupled naphthylisochinoline alkaloid from Ancistrocladus heyneanus. Phytochemistry 43:1405–1410

    Article  CAS  Google Scholar 

  • Brisson L, Charest PM, De Luca V, Ibrahim RK (1992) Immunocytochemical localization of vindoline in mesophyll protoplasts of Catharanthus roseus. Phytochemistry 31:465–470

    Article  CAS  Google Scholar 

  • Cai X, Wu H, Hu ZH (1999) Histochemistry of sinomenine in the stem of Sinomenium acutum and Sinomenium acutum var. cinerum (Chinese). Acta Bot Boreat Occident Sin 19:104–107

    CAS  Google Scholar 

  • Christodoulakis NS, Kogia S, Mavroeid D, Fasseas C (2010) Anatomical and histochemical investigation of the leaf of Teucrium polium, a pharmaceutical sub-shrub of the Greek phryganic formations. J Biol Res Thessalon 14:199–209

    Google Scholar 

  • Coetzee J, van der Merwe CF (1984) Extraction of substances during glutaraldehyde fixation of plant cells. J Microsc 135:147–158

    Article  CAS  Google Scholar 

  • Coetzee J, van der Merwe CF (1985) Effect of glutaraldehyde on the osmolarity of the buffer vehicle. J Microsc 138:99–105

    Article  CAS  Google Scholar 

  • Coetzee J, van der Merwe CF (1986) The osmotic effect of glutaraldehyde-based fixatives on plant storage tissue. J Microsc 141:111–118

    Article  CAS  Google Scholar 

  • Coetzee J, van der Merwe CF (1987) Some characteristics of the buffer vehicle in glutaraldehyde-based fixatives. J Microsc 146:143–155

    Article  CAS  Google Scholar 

  • Corsi G, Bottega S (1999) Glandular hair of Salvia officinalis: new data on morphology localization and histochemistry in relation to function. Ann Bot Lond 84:657–664

    Article  Google Scholar 

  • Dewick PM (2009) Medicinal natural products: a biosynthetic approach. Wiley, Chicester

    Book  Google Scholar 

  • Dreyer DL, Jones KC, Molyneux RJ (1985) Feeding deterrency of some pyrrolizidine, indolizidine, and quinolizidine alkaloids towards pea aphid (Acyrthosiphon pisum) and evidence for phloem transport of indolizidine alkaloid swainsonine. J Chem Ecol 11:1045–1051

    Article  CAS  Google Scholar 

  • Ferreira JFS, Duke SO, Vaughn KC (1998) Histochemical and immunocytochemical localization of tropane alkaloids in Erythroxylum coca var. coca and E. novogranatense var. novogranatense. Int J Plant Sci 159:492–503

    Article  CAS  Google Scholar 

  • Forster B, van de Ville D, Berent J, Sage D, Unser M (2004) Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images. Microsc Res Techniq 65:33–42

    Article  Google Scholar 

  • Frosch T, Schmitt M, Schenzel K, Faber JH, Bringmann G, Kiefer W, Popp J (2006) In vivo localization and identification of the antiplasmodial alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by a combination of fluorescence, near infrared fourier transform, and density functional theory calculations. Biopolymers 82:295–300

    Article  PubMed  CAS  Google Scholar 

  • Frosch T, Schmitt M, Noll T, Bringmann G, Schenzel K, Popp J (2007a) Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy. Anal Chem 79:986–993

    Article  PubMed  CAS  Google Scholar 

  • Frosch T, Schmitt M, Popp J (2007b) In situ UV resonance Raman micro-spectroscopic localization of the antimalarial quinine in cinchona bark. J Phys Chem B 111:4171–4177

    Article  PubMed  CAS  Google Scholar 

  • Furr M, Mahlberg PG (1981) Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J Nat Prod 44:153–159

    Article  Google Scholar 

  • Giloh H, Sedat JW (1982) Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 217:1252–1255

    Article  PubMed  CAS  Google Scholar 

  • Hara Y (2001) Green tea health benefits and applications. Marcel Dekker Inc, New York

    Book  Google Scholar 

  • Harborne JB (1994) Introduction to ecological biochemistry. Academic Press, Boston

    Google Scholar 

  • Hayat MA (2000) Principles and techniques of electron microscopy: biological applications. Cambridge University Press, USA

    Google Scholar 

  • Ibrahim RK (1990) Immunocytochemical localization of plant secondary metabolites and the enzymes involved in their biosynthesis. Phytochem Anal 1:49–59

    Article  Google Scholar 

  • ISO 1573 (1980) Tea-determination of loss in mass at 103 °C. Ref. No. ISO 1573-1980 (E). ISO Organization, Geneva

  • ISO/CD 14502-2 (2002) Tea methods for determination of substances characteristic of green and black tea-Part 2: determination of catechins in green tea—method using high-performance liquid chromatography. ISO Organization, Geneva

  • Kato A, Crozier A, Ashihara H (1998) Subcellular localization of the N-3 methyltransferase involved in caffeine biosynthesis in tea. Phytochemistry 48:777–779

    Article  CAS  Google Scholar 

  • Kato M, Mizuno K, Fujimura T, Iwama M, Irie M, Crozier A, Ashihara H (1999) Purification and characterization of caffeine synthase from tea leaves. Plant Physiol 31:465–470

    Google Scholar 

  • Khanam N, Khoo C, Close R, Khan AG (2000) Organogenesis, differentiation and histolocalization of alkaloids in cultured tissues and organs of Duboisia myoporoides R. Br Ann Bot Lond 86:745–752

    Article  CAS  Google Scholar 

  • Kim ES, Mahlberg PG (1997) Immunochemical localization of tetrahydrocannabinol (THC) in cryofixed glandular trichomes of cannabis (Cannabaceae). Am J Bot 84:336–342

    Article  PubMed  CAS  Google Scholar 

  • Koshiishi C, Kato A, Yama S, Crozier A, Ashihara H (2001) A new caffeine biosynthetic pathway in tea leaves: utilization of adenosine released from the S-adenosyl-l-methionine cycle. FEBS Lett 499:50–54

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Liang Y, Dong J, Lu J, Xu H, Wang H (2006) Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment. Food Chem 101:1451–1456

    Article  Google Scholar 

  • Liang Z, Chen H, Zhao Z (2009) An experimental study on four kinds of Chinese herbal medicines containing alkaloids using fluorescence microscope and microspectrometer. J Microsc Oxford 233:24–34

    Article  CAS  Google Scholar 

  • Meininger M, Stowasser R, Jakob PM, Schneider H, Koppler D, Bringmann G, Zimmermann U, Haase A (1997) Nuclear magnetic resonance microscopy of Ancistrocladus heyneanus. Protoplasma 198:210–217

    Article  CAS  Google Scholar 

  • Mesjasz-Przybyiowicz J, Barnabas A, Przybyiowicz W (2007) Comparison of cytology and distribution of nickel in roots of Ni-hyperaccumulating and non-hyperaccumulating genotypes of Senecio coronatus. Plant Soil 293:61–78

    Article  Google Scholar 

  • Mondolot L, La Fisca P, Buatois B, Talansier E, De Kochko A, Campa C (2006) Evolution in caffeoylquinic acid content and histolocalization during Coffea canephora leaf development. Ann Bot Lond 98:33–40

    Article  CAS  Google Scholar 

  • Mondolot-Cosson L, Andary C, Guang-Hui D, Roussel J-L (1997) Histolocalisation de substances phénoliques intervenant lors d’interactions plante-pathogéne chez le tournesol et la vigne. Acta Bot Gallica 144:353–362

    Google Scholar 

  • Moraes TMS, Barros CF, Neto SJS, Gomes M, Da Cunha M (2009) Leaf blade anatomy and ultrastructure of six Simira species (Rubiaceae) from the Atlantic Rain Forest, Brazil. Biocell 33:155–165

    PubMed  Google Scholar 

  • Mösli Waldhauser SS, Baumann TW (1996) Compartmentation of caffeine and related purine alkaloids depends exclusively on the physical chemistry of their vacuolar complex formation with chlorogenic acids. Phytochemistry 42:985–996

    Article  Google Scholar 

  • Nathanson JA (1984) Caffeine and related methylxanthines: possible naturally occurring pesticides. Science 226:184–187

    Article  PubMed  CAS  Google Scholar 

  • Neu R (1957) A new reagent for differentiating and determining flavones on paper chromatograms. Naturwissenschaften 43:82

    Article  Google Scholar 

  • Neumann D, Krauss G, Gröger D (1983) Indole alkaloid formation and storage in cell suspension cultures of Catharanthus roseus. J Med Plants Res 48:20–23

    Article  CAS  Google Scholar 

  • Nikolakaki A, Christodoulakis NS (2006) Histological investigation of the leaf and leaf-originating calli of Lavandula vera L. Isr J Plant Sci 54:281–290

    Article  Google Scholar 

  • Pasqua G, Monacelli B, Valletta A (2004) Cellular localisation of the anti-cancer drug camptothecin in Camptotheca acuminata Decne (Nyssaceae). Eur J Histochem 48:321–328

    PubMed  Google Scholar 

  • Pedersen O (2006) Pharmaceutical chemical analysis: methods for identification and limit tests. Taylor and Francis Group LLC, Florida

    Book  Google Scholar 

  • Platt KA, Thomson WW (1992) Idioblast oil cells of avocado: distribution, isolation, ultrastructure, histochemistry, and biochemistry. Int J Plant Sci 153:301–331

    Article  CAS  Google Scholar 

  • Rizvi SJH, Pandey SK, Mukerji D, Mathur SN (1980) 1,3,7-Trimethylxanthine, a new chemosterilant for stored grain pest, Callosobruchus chinensis (L). J Appl Entomol 90:378–381

    CAS  Google Scholar 

  • Rogers K, Milnes J, Gormally J (1993) The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates. Int J Mass Spectrom 123:125–131

    Article  CAS  Google Scholar 

  • Sacchetti G, Ballero M, Serafini M, Romagnoli C, Bruni A, Poli F (1999) Laticifer tissue distribution and alkaloid location in Vinca sardoa (STEARN) Pign. (Apocynaceae), an endemic plant of Sardinia (Italy). Phyton-Ann Rei Bot A 39:265–275

    Google Scholar 

  • Spencer CM, Cai Y, Martin R, Gaffney SH, Goulding PN, Magnolato D, Lilley TH, Haslam E (1988) Polyphenol complexation: some thoughts and observations. Phytochemistry 27:2397–2409

    Article  CAS  Google Scholar 

  • Steinbrecht RA, Zierold K (1987) Cryotechniques in biological and electron microscopy. Springer, New York

    Book  Google Scholar 

  • The Merck Index (1976) An encyclopedia of chemicals and drugs. Merck and Co Inc, New Jersey

    Google Scholar 

  • Urlaub E, Popp J, Kiefer W, Bringmann G, Koppler D, Schneider H, Zimmerman U, Schrader B (1997) FT-Raman investigation of alkaloids in the liana Ancistrocladus heyneanus. Biospectroscopy 4:113–120

    Article  Google Scholar 

  • Verzár–Petri G (1975) Alkaloid biosynthesis in plant tissue. Egypt J Pharm Sci 16:123–128

    Google Scholar 

  • White HA, Spencer M (1964) The sites of alkaloid concentration in Lupinus luteus tissues. Can J Bot 42:1481–1485

    Article  CAS  Google Scholar 

  • Willson KC, Clifford MN (1992) Tea cultivation to consumption. Chapman and Hall, London

    Google Scholar 

  • Yoder LR, Mahlberg PG (1976) Reactions of alkaloid and histochemical indicators in laticifers and specialized parenchyma cells of Catharanthus roseus (Apocynaceae). Am J Bot 63:1167–1173

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Alan Hall and Andre Botha from the laboratory for microscopy and microanalysis at the University of Pretoria for all their microscopy knowledge and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane V. van Breda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Breda, S.V., van der Merwe, C.F., Robbertse, H. et al. Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves. Planta 237, 849–858 (2013). https://doi.org/10.1007/s00425-012-1804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1804-x

Keywords

Navigation