Skip to main content
Log in

Tonoplast of Beta vulgaris L. contains detergent-resistant membrane microdomains

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The experiments conducted on tonoplast of Beta vulgaris L. roots were performed to identify detergent-resistant lipid–protein microdomains (DRMs, interpreted as lipid rafts).The presence of DRMs can be found when dynamic clustering of sphingolipids, sterols, saturated fatty acids is registered, and the insolubility of these microdomains in nonionic detergents at low temperatures is proven. The elucidation of tonoplast microdomains has been based on results obtained with the aid of high-speed centrifuging in the sucrose gradient. The experiments have shown that tonoplast microdomains are rich in sphingolipids, free sterols and saturated fatty acids (such a lipid content is also typical of lipid–protein microdomains of other membranes), while only few phospholipids are present in tonoplast microdomains. The presence of microdomains has been confirmed by fluorescence and confocal microscopy using filipin and Laurdan as fluorescent probes. The experiments with Laurdan have shown that tonoplast microdomains are characterized by a high order compared to characteristics of the rest of the tonoplast. Thus, the presence of detergent-resistant lipid–protein microdomains in the tonoplast has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DBI:

Double bond index

DMSO:

Dimethyl sulfoxide

DRMs:

Detergent-resistant microdomains

EDTA:

Ethylenediaminetetraacetic acid

GP:

Generalized polarization

IMGPs:

Intra-membrane globular particles

PMSF:

Phenylmethanesulfonyl fluoride

TLC:

Thin layer chromatography

References

  • Bagnat M, Keranen S, Shevchenko A, Shevchenko A, Simons K (2000) Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA 97:3254–3259

    Article  PubMed  CAS  Google Scholar 

  • Bligh E, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Borner G, Sherrier D, Weimar T, Michaelson L, Hawkins N, MacAskill A, Napier J, Beale M, Lilley K, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Branton D, Deamer D (1972) Membrane structure. Springer–Verlag, Vienna

  • Brown D, London E (1998) Functions of lipid rafts in biological membranes. Cell Dev Biol 14:111–136

    Article  CAS  Google Scholar 

  • Carreau J, Dubacq J (1978) Adaptation of macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts. J Chromatogr 151:384–390

    Article  CAS  Google Scholar 

  • Christie W (1988) Equivalent chain lengths of methyl ester derivatives of fatty acids on gas chromatography: a reappraisal. J Chromatogr 447:305–314

    CAS  Google Scholar 

  • Gaus K, Zech T, Harder T (2006) Visualizing membrane microdomains by Laurdan 2-photon microscopy. Mol Membr Biol 23:41–48

    Article  PubMed  CAS  Google Scholar 

  • Grzybek M, Kozubek A, Dubielecka P, Sikorski F (2005) Rafts–the current picture. Folia Histochem Cytobiol 43:3–10

    PubMed  CAS  Google Scholar 

  • Hansen G, Niels-Christiansen L, Thorsen E, Immerdal L, Danielsen E (2000) Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane traffic. J Biol Chem 275:5136–5142

    Article  PubMed  CAS  Google Scholar 

  • Harder T, Simons K (1999) Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. J Immunol 29:556–562

    CAS  Google Scholar 

  • Kates M (1972) Techniques of lipidology. In: Work TS, Work E (eds) Laboratory techniques in biochemistry and molecular biology. North-Holland Publishing Co., Amsterdam, pp 269–610

    Google Scholar 

  • Laloi M, Perret A, Chatre L, Melser S, Cantrel C, Vaultier M, Zachowski A, Bathany K, Schmitter J, Vallet M, Lessire R, Hartmann M, Moreau P (2007) Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 143:461–472

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre B, Furt F, Hartmann M-A, Michaelson L, Carde J-P, Sargueil-Boiron F, Rossignol M, Napier J, Cullimore J, Bessoule J–J, Mongrand S (2007) Sharacterization of lipid rafts from Medicago truncatula roots plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144:402–418

    Article  PubMed  CAS  Google Scholar 

  • Leigh RA, Branton D (1976) Isolation of vacuoles from root storage tissue of Beta vulgaris L. Plant Physiol 58:656–662

    Article  PubMed  CAS  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane organizing principle. Science 327:46–50

    Article  PubMed  CAS  Google Scholar 

  • Lyons J, Weaton T, Pratt Y (1994) Relationship between the physical nature of mitochondrial membranes. J Plant Physiol 143:399–406

    Article  Google Scholar 

  • Makarenko S, Salyaev R, Konenkinat (1992) Chemical composition and structure of vacuolar membrane lipids. Biochemistry (Moscow). Series A: Membr Cell Biol 6:379–394

    Google Scholar 

  • Mishra S, Joshi PG (2007) Lipid raft heterogeneity: en enigma. J Neurochem 103(Suppl. 1):135–142

    Article  PubMed  CAS  Google Scholar 

  • Mongrand S, Morel J, Laroche J, Claverol S, Carde J-P, Hartmann M-A, Bonneu M, Simon-Plas F, Lessire R, Bessoule J-J (2004) Lipid rafts in higher cells. Purification and characterization of Triton X-100 insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    Article  PubMed  CAS  Google Scholar 

  • Moore D, Mollenhauer H (1976) Interactions among cytoplasm, endomembranes and the cell surface. Encyclopedia Plant Physiol, N.S., vol. 3. Springer–Verlag, Berlin–Heidelberg–New York, pp 288–344

  • Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule J, Blein J, Simon-Plast F (2006) Proteomics of plant detergent-resistent membranes. Mol Cell Proteomics 5:1396–1411

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Zha X, Tabas I, Maxfield F (1998) Cholesterol distribution in living cells: fluorescence imaging using dehydrosterol as a fluorescent cholesterol analog. Biophysical J 75:1915–1925

    Article  CAS  Google Scholar 

  • Neidermeyer W (1976) The elasticity of the yeast cell tonoplast related to its ultrastructure and chemical composition II. Chemical and cytochemical investigation. Cytobiologie 13:380–393

    Google Scholar 

  • Nikulina GN (1965) Survey of the methods of quantitative analysis of phosphorus with formation of molybdenum blue. Nauka, Leningrad, 45 p

    Google Scholar 

  • Nurminsky VN, Ozolina NV, Nesterkina IS, Kolesnikova EV, Korzun AM, Tikhonov NV, Tarkov MS, Chernyshov MY, Salyaev RK (2011) Stability of plant vacuolar membranes under the conditions of osmotic stress and influence of redox agents. Biochemistry (Moscow). Series A: Membr Cell Biol 5:185–190

    Google Scholar 

  • Ozolina NV, Kolesnikova EV, Nesterkina IS, Nurminsky VN, Boyarkin JV, Sitneva LA, Salyaev RK (2009) Interaction of signal systems (nitric oxide and calcium) in regulation of hydrolytic activity of tonoplast H+-pyrophosphatase under normal conditions and stress. Dokl Biochem Biophys 428:242–244

    Article  PubMed  CAS  Google Scholar 

  • Ozolina NV, Kolesnikova EV, Nurminsky VN, Nesterkina IS, Dudareva LV, Donskaya LI, Salyaev RK (2010) Influence of exogenous NO donator and variations in the Ca2+ content on transport activity related to tonoplast proton pumps in ontogenesis and under hyperosmotic stress. Biochemistry (Moscow). Series A: Membr Cell Biol 4:297–301

    Google Scholar 

  • Ozolina NV, Kolesnikova EV, Nurminsky VN, Nesterkina IS, Dudareva LV, Lapteva TI, Salyaev RK (2012) The influence of osmotic stress on the calcium ions in the red beet vacuoles and on the transport activity of tonoplast proton pumps. J Stress Physiol Biochem (Russian) 8:199–209

    Google Scholar 

  • Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. J Biochem 378:281–292

    Article  CAS  Google Scholar 

  • Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50:228–323

    Google Scholar 

  • Salyaev RK, Chernyshov VI (1975) Peculiarities of the ultrastructure and formation of surface membranes in plant cells. In: Troshin AS (ed) Structure and functions of biological membranes. Nauka, Moscow, pp 108–119

    Google Scholar 

  • Salyaev RK, Kuzevanov VY, Khaptagaev SB, Kopytchuk VN (1981) Isolation and purification of vacuoles and vacuolar membranes from plant cells. Russian J Plant Physiol 28:1295–1306

    Google Scholar 

  • Salyaev RK, Khaptagaev SB, Kuzevanov VY, Kopytchuk VN (1983) On the ultrastructure of isolated vacuolar membranes. Cytology 25:643–649

    Google Scholar 

  • Salyaev RK, Makarenko SP, Kuzevanov VY (1986) Peculiarities of the vacuolar membrane structure revealed by IR-spectroscopy. Izvestiya Sib Dpt USSR Akad Sci Ser Biol 1:76–82

    Google Scholar 

  • Schneckenburger H, Wagner M, Kretzschmar M, Strauss WSL, Sailer R (2004) Laser-assisted fluorescence microscopy for measuring cell membrane dynamics. Photochem Photobiol Sci 3:817–822

    Article  PubMed  CAS  Google Scholar 

  • Sengupta P, Baird B, Holowka D (2007) Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Semin Cell Lev Biol 18:583–590

    Article  CAS  Google Scholar 

  • Sevlever D, Pickett S, Mann K, Sambamurti K, Medof M, Rosenberry T (1999) Glycosylphosphatidylinositol-anchor intermediates associate with triton-insoluble membranes in subcellular compartments that include the endoplasmic reticulum. J Biochem 343:627–635

    Article  CAS  Google Scholar 

  • Sharma P, Varma R, Sarasij RC, Ira Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  PubMed  CAS  Google Scholar 

  • Shotton D (1978) Freezeetch studies of membrane proteins: a review. Biochem Soc Trend 6:38–40

    CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Sampaio J (2011) Membrane organization and lipid rafts. Gold Spring Harbor Perspect Biol 3:a004697

    Article  Google Scholar 

  • Singer SJ, Nicholson GL (1972) The fluid mosaic model of the structure of cell membrane. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  • Stöckl MT, Herrmann A (2009) Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy. Biochim Biophys Acta 1798:1444–1456

    Google Scholar 

  • Yang S, Maeshima M, Tanaka Y, Komatsu S (2003) Modulation of vacuolar H+-pumps and aquaporin by phytohormones in rice seedling leaf sheaths. Biol Pharm Bull 26:88–92

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Uemura M (1986) Lipid composition of plasma membranes and tonoplast isolated from etiolated seedlings of mung bean (Vigna radiate L.). Plant Physiol 82:807–812

    Article  PubMed  CAS  Google Scholar 

  • Zbeng Y, Berg K, Foster L (2009) Mitochondria do not contain lipid rafts, and lipid rafts do not contain mitochondrial proteins. J Lipid Res 50:988–998

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the colleagues of Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, namely, Dr. Aleksey V. Stepanov for his assistance in investigations on the fluorescence microscope, to Dr. Lubov V. Dudareva for her assistance in fatty acid analysis, to Mrs. Lidia A. Sitneva and Mrs. Tatiana I. Lapteva for their help in the processes of tonoplast isolation and to Mr. Viktor A. Galichenko for technical assistance in centrifuging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia V. Ozolina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozolina, N.V., Nesterkina, I.S., Kolesnikova, E.V. et al. Tonoplast of Beta vulgaris L. contains detergent-resistant membrane microdomains. Planta 237, 859–871 (2013). https://doi.org/10.1007/s00425-012-1800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1800-1

Keywords

Navigation