Skip to main content
Log in

Characterization of the stress-inducible OsNCED3 promoter in different transgenic rice organs and over three homozygous generations

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2014

Abstract

To be effective in crop biotechnology applications, gene promoters need to be stably active over sequential generations in a population of single-copy transgenic lines. Most of the stress-inducible promoters characterized in plants thus far have been analyzed at early (T0, T1 or T2) generations and/or by testing only a small number of transgenic lines. In our current study, we report our analysis of OsNCED3, a stress-inducible rice promoter involved in ABA biosynthesis, in various organs and tissues of transgenic rice plants over the T2–4 homozygous generations. The transgene copy numbers in the lines harboring the OsNCED3:gfp construct were determined and six single- and two double-copy transgenic lines were analyzed for promoter activity in comparison with the Wsi18, a stress-inducible promoter previously characterized. The exogenous promoter activities were found to be significantly enhanced in the roots and leaves, whereas zero or low levels of activity were evident in grains and flowers, under drought and high-salinity conditions. The highest induction levels of gfp transcripts in the OsNCED3:gfp plants upon drought treatments were 161- and 93-fold in leaves and roots, respectively, and these levels were comparable with those of gfp transcripts in the Wsi18:gfp plants. A comparison of the promoter activities between the T2–T4 plants revealed that comparable activity levels were maintained over these three homozygous generations with no evidence of silencing. Thus, our results provide the OsNCED3 promoter that is stress-inducible in a whole rice plant except for in the aleurones and endosperm and stably active over three generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NCED :

9-cis-Epoxycarotenoid dioxygenase

Wsi18 :

Water stress-inducible protein 18

NT:

Non-transgenic

References

  • Atkinson RG, Bieleski LRF, Gleave AP, Janssen B-J, Morris BAM (1998) Post-transcriptional silencing of chalcone synthase in petunia using a geminivirus-based episomal vector. Plant J 15:593–604

    Article  CAS  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  PubMed  CAS  Google Scholar 

  • Battraw MJ, Hall TC (1990) Histochemical analysis of CaMV 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol 15:527–538

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684

    PubMed  CAS  Google Scholar 

  • Burbidge A, Grieve TM, Jackson A, Thompson A, McCarty DR, Taylor IB (1999) Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J 17:427–431

    Article  PubMed  CAS  Google Scholar 

  • Capell T, Escobar C, Liu H, Burtin D, Lepri O, Christou P (1998) Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor Appl Genet 97:246–254

    Article  CAS  Google Scholar 

  • Chernys J, Zeevaart JAD (2000) Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol 124:343–353

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes :structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581

    Article  PubMed  CAS  Google Scholar 

  • Dietz-Pfeilstetter A (2010) Stability of transgene expression as a challenge for genetic engineering. Plant Sci 179:164–167

    Article  CAS  Google Scholar 

  • Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993

    Article  PubMed  CAS  Google Scholar 

  • Furtado A, Henry RJ (2005) The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice. Plant Biotechnol J 3:421–434

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Raghuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18:275–282

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002a) Heterology expression of the Arabidopsis C-Repeat/Dehydration Response Element Binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002b) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  PubMed  CAS  Google Scholar 

  • Hwang SG, Chen HC, Huang WY, Chu YC, Shii CT, Cheng WH (2010) Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci 178:12–22

    Article  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2000) A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol 123:553–562

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  PubMed  CAS  Google Scholar 

  • Jang IC, Choi WB, Lee KH, Song SI, Nahm BH, Kim JK (2002) High-level and ubiquitous expression of the rice cytochrome c gene OsCc1 and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocots. Plant Physiol 129:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Jang CS, Lee HJ, Chang SJ, Seo YW (2004) Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.). Plant Sci 167:995–1001

    Article  CAS  Google Scholar 

  • Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T, White RG, Gubler F, Dolferus R (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156:647–662

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Kim JK, Ha SH (2011) Use of animal viral IRES sequence makes multiple truncated transcripts without mediating polycistronic expression in rice. J Kor Soc Appl Biol Chem 54:678–684

    CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kawalleck P, Somssich IE, Feldbrügge M, Hahlbrock K, Weisshaar B (1993) Polyubiquitin gene expression and structural properties of the ubi 4–2 gene in Petroselinum crispum. Plant Mol Biol 21:673–684

    Article  PubMed  CAS  Google Scholar 

  • Kim EH, Kim YS, Park SH, Koo YJ, Choi YD, Chung YY, Lee IJ, Kim JK (2009) Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol 149:1751–1760

    Article  PubMed  CAS  Google Scholar 

  • Lechtenberg B, Schubert D, Forsbach A, Gils M, Schmidt R (2003) Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J 34:507–517

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant cell 10:1391–1406

    PubMed  CAS  Google Scholar 

  • Marcotte WR Jr, Russell SH, Quatrano RS (1989) Abscisic acid-responsive sequences from the em gene wheat. Plant Cell 1:969–976

    PubMed  CAS  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231:150–160

    Article  PubMed  CAS  Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Annu Rev Plant Mol Biol 47:23–48

    Article  CAS  Google Scholar 

  • Muller AE (2010) Gene silencing in plants: transgenes as targets and effectors. In: Kempken F, Jung C (eds) Genetic modification of plants Agriculture, horticulture and forestry. Springer, Berlin, pp 79–101

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 1(15):473–497

    Article  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Maruyama K, Fujita M, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  PubMed  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  CAS  Google Scholar 

  • Ouellet F, Vazquez-Tello A, Sarhan F (1998) The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett 423:324–328

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Yi NR, Kim YS, Jeong MH, Bang SW, Choi YD, Kim JK (2010) Analysis of five novel putative constitutive gene promoters in transgenic rice plants. J Exp Bot 61:2459–2467

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Jeong JS, Redillas MC, Jung H, Bang SW, Kim YS, Kim JK (2012) Transgenic overexpression of UIP1, an interactor of the 3′ untranslated region of the Rubisco small subunit mRNA, increases rice tolerance to drought. Plant Biotechnol Rep. doi:10.1007/s11816-012-0239-y

    Google Scholar 

  • Qin X, Zeevaart JAD (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA 96:15354–15361

    Article  PubMed  CAS  Google Scholar 

  • Rai M, He C, Wu R (2009) Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice. Transgenic Res 18:787–799

    Article  PubMed  CAS  Google Scholar 

  • Redillas MC, Kim YS, Jeong JS, Strasser RJ, Kim J-K (2011a) The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. Plant Biotechnol Rep 5:169–176

    Article  Google Scholar 

  • Redillas MC, Jeong JS, Strasser RJ, Kim YS, Kim J-K (2011b) JIP analysis on rice (Oryza sativa cv Nipponbare) grown under limited nitrogen conditions. J Korean Soc Appl Biol Chem 54:827–832

    CAS  Google Scholar 

  • Redillas MC, Park SH, Lee JW, Kim Ys, Jeong JS, Jung H, Bang SW, Hahn TR, Kim JK (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6:89–96

    Article  Google Scholar 

  • Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160

    Article  PubMed  CAS  Google Scholar 

  • Straub PF, Shen Q, Ho THD (1994) Structure and promoter analysis of an ABA- and stress-regulated barley gene, HVA1. Plant Mol Biol 26:617–630

    Article  PubMed  CAS  Google Scholar 

  • Su J, Shen Q, Ho TH, Wu R (1998) Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiol 117:913–922

    Article  PubMed  CAS  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173–183

    Article  PubMed  CAS  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis-epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58:545–554

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Datla R, Georges F, Loewen M, Cutler AJ (1995) Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol Biol 28:605–617

    Article  PubMed  CAS  Google Scholar 

  • Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102:1077–1084

    PubMed  CAS  Google Scholar 

  • Xiao FH, Xue GP (2001) Analysis of the promoter activity of late embryogenesis abundant protein genes in barley seedling under conditions of water deficit. Plant Cell Rep 20:667–673

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236:331–340

    Article  PubMed  CAS  Google Scholar 

  • Yi NR, Kim YS, Jeong MH, Oh SJ, Jeong JS, Park SH, Jung HR, Chol YD, Kim JK (2010) Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta 232:743–754

    Article  PubMed  CAS  Google Scholar 

  • Yi NR, Oh SJ, Kim YS, Jang HJ, Park SH, Jeong JS, Song SI, Choi YD, Kim JK (2011) Analysis of the Wsi18, a stress-inducible promoter that is active in the whole grain of transgenic rice. Transgenic Res 20:153–163

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, McElroy D, Wu R (1991) Analysis of rice Act1 5′ region activity in transgenic rice plants. Plant Cell 3:1155–1165

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Rural Development Administration under the “Cooperative Research Program for Agriculture Science & Technology Development” (Project No. PJ906910), the Next-Generation BioGreen 21 Program (Project No. PJ007971 to J.-K.K., PJ008184 to S.-H.H. and PJ009022 to J.S.J.), and by the Ministry of Education, Science and Technology under the “Mid-career Researcher Program” (Project No. 20100026168 to J.-K.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sun-Hwa Ha or Ju-Kon Kim.

Additional information

S. W. Bang, S.-H. Park and J. S. Jeong contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s00425-014-2112-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bang, S.W., Park, SH., Jeong, J.S. et al. Characterization of the stress-inducible OsNCED3 promoter in different transgenic rice organs and over three homozygous generations. Planta 237, 211–224 (2013). https://doi.org/10.1007/s00425-012-1764-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1764-1

Keywords

Navigation