Skip to main content
Log in

Physiological responses and endogenous cytokinin profiles of tissue-cultured ‘Williams’ bananas in relation to roscovitine and an inhibitor of cytokinin oxidase/dehydrogenase (INCYDE) treatments

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The effect of supplementing either meta-topolin (mT) or N 6-benzyladenine (BA) requiring cultures with roscovitine (6-benzylamino-2-[1(R)-(hydroxymethyl)propyl]amino-9-isopropylpurine), a cyclin-dependent kinase (CDK) and N-glucosylation inhibitor, and INCYDE (2-chloro-6-(3-methoxyphenyl)aminopurine), an inhibitor of cytokinin (CK) degradation, on the endogenous CK profiles and physiology of banana in vitro was investigated. Growth parameters including multiplication rate and biomass were recorded after 42 days. Endogenous CK levels were quantified using UPLC–MS/MS while the photosynthetic pigment and phenolic contents were evaluated spectrophotometrically. The highest regeneration rate (93 %) was observed in BA + roscovitine while mT + INCYDE plantlets produced most shoots. Treatment with BA + roscovitine had the highest shoot length and biomass. Although not significant, there was a higher proanthocyanidin level in BA + roscovitine treatments compared to the control (BA). The levels of total phenolics and flavonoids were significantly higher in mT + roscovitine treatment than in the mT-treated regenerants. The presence of roscovitine and/or INCYDE had no significant effect on the photosynthetic pigments of the banana plantlets. Forty-seven aromatic and isoprenoid CKs categorized into nine CK-types were detected at varying concentrations. The presence of mT + roscovitine and/or INCYDE increased the levels of O-glucosides while 9-glucosides were higher in the presence of BA. Generally, the underground parts had higher CK levels than the aerial parts; however, the presence of INCYDE increased the level of CK quantified in the aerial parts. From a practical perspective, the use of roscovitine and INCYDE in micropropagation could be crucial in the alleviation of commonly observed in vitro-induced physiological abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BA:

N 6-Benzyladenine

BA9G:

N 6-Benzyladenine-9-glucoside

BAR:

N 6-Benzyladenosine

BAR5′MP:

N 6-Benzyladenosine-5′-monophosphate

CCE:

Cyanidin chloride equivalents

CDK:

Cyclin-dependent kinase

CE:

Catechin equivalents

CK:

Cytokinin

CKX:

Cytokinin oxidase/dehydrogenase

cZ:

cis-Zeatin

cZ9G:

cis-Zeatin-9-glucoside

cZOG:

cis-Zeatin-O-glucoside

cZR:

cis-Zeatin riboside

cZR5′MP:

cis-Zeatin riboside-5′-monophosphate

cZROG:

cis-Zeatin-O-glucoside riboside

DHZ:

Dihydrozeatin

DHZ9G:

Dihydrozeatin-9-glucoside

DHZOG:

Dihydrozeatin-O-glucoside

DHZR:

Dihydrozeatin riboside

DHZR5′MP:

Dihydrozeatin riboside-5′-monophosphate

DHZROG:

Dihydrozeatin-O-glucoside riboside

DMRT:

Duncan’s multiple range test

GAE:

Gallic acid equivalents

IAC:

Immunoaffinity chromatography

INCYDE:

2-Chloro-6-(3-methoxyphenyl)aminopurine

iP:

N 6-Isopentenyladenine

iP9G:

N 6-Isopentenyladenine-9-glucoside

iPR:

N 6-Isopentenyladenosine

iPR5′MP:

N 6-Isopentenyladenosine-5′-monophosphate

IPT:

Isopentenyltransferase

Kin:

Kinetin

Kin9G:

Kinetin-9-glucoside

KinR:

Kinetin riboside

KinR5′MP:

Kinetin riboside-5′-monophosphate

MRM:

Multiple reaction monitoring

MS:

Murashige and Skoog medium

mT:

meta-Topolin

mT9G:

meta-Topolin-9-glucoside

mTOG:

meta-Topolin-O-glucoside

mTR:

meta-Topolin riboside

mTR5′MP:

meta-Topolin-5′-monophosphate

mTROG:

meta-Topolin-O-glucoside riboside

oT:

ortho-Topolin

oT9G:

ortho-Topolin-9-glucoside

oTOG:

ortho-Topolin-O-glucoside

oTR:

ortho-Topolin riboside

oTR5′MP:

ortho-Topolin-5′-monophosphate

oTROG:

ortho-Topolin-O-glucoside riboside

PGR:

Plant growth regulator

PPFD:

Photosynthetic photon flux density

pT:

para-Topolin

PTC:

Plant tissue culture

pTOG:

para-Topolin-O-glucoside

pTR:

para-Topolin riboside

pTR5′MP:

para-Topolin-5′-monophosphate

pTROG:

para-Topolin-O-glucoside riboside

tZ:

trans-Zeatin

tZ9G:

trans-Zeatin-9-glucoside

tZOG:

trans-Zeatin-O-glucoside

tZR:

trans-Zeatin riboside

tZR5′MP:

trans-Zeatin riboside-5′-monophosphate

tZROG:

trans-Zeatin-O-glucoside riboside

UPLC:

Ultra performance liquid chromatography

References

  • Amoo SO, Finnie JF, Van Staden J (2011) The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regul 63:197–206

    Article  CAS  Google Scholar 

  • Aremu AO, Bairu MW, Finnie JF, Van Staden J (2012a) Stimulatory role of smoke–water and karrikinolide on the photosynthetic pigment and phenolic contents of micropropagated ‘Williams’ bananas. Plant Growth Regul 67:271–279

    Article  CAS  Google Scholar 

  • Aremu AO, Bairu MW, Doležal K, Finnie JF, Van Staden J (2012b) Topolins: a panacea to plant tissue culture challenges? Plant Cell Tiss Org Cult 108:1–16

    Article  CAS  Google Scholar 

  • Auer CA (1997) Cytokinin conjugation: recent advances and patterns in plant evolution. Plant Growth Regul 23:17–32

    Article  CAS  Google Scholar 

  • Bairu MW, Stirk WA, Doležal K, Van Staden J (2007) Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tiss Org Cult 90:15–23

    Article  CAS  Google Scholar 

  • Bairu MW, Stirk WA, Doležal K, Van Staden J (2008) The role of topolins in micropropagation and somaclonal variation of banana cultivars ‘Williams’ and ‘Grand Naine’ (Musa spp. AAA). Plant Cell Tiss Org Cult 95:373–379

    Article  CAS  Google Scholar 

  • Bairu MW, Novák O, Doležal K, Van Staden J (2011) Changes in endogenous cytokinin profiles in micropropagated Harpagophytum procumbens in relation to shoot-tip necrosis and cytokinin treatments. Plant Growth Regul 63:105–114

    Article  CAS  Google Scholar 

  • Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70:957–969

    Article  PubMed  CAS  Google Scholar 

  • Binarová P, Doležel J, Draber P, Heberle-Bors E, Strnad M, Bögre L (1998) Treatment of Vicia faba root tip cells with specific inhibitors to cyclin-dependent kinases leads to abnormal spindle formation. Plant J 16:697–707

    Article  PubMed  Google Scholar 

  • Blagoeva E, Malbeck J, Gaudinová A, Vaněk T, Vaňková R (2003) Cyclin-dependent kinase inhibitor, roscovitine, in combination with exogenous cytokinin, N6-benzyladenine, causes increase of cis-cytokinins in immobilized tobacco cells. Biotechnol Lett 25:469–472

    Article  PubMed  CAS  Google Scholar 

  • Blagoeva E, Dobrev PI, Malbeck J, Motyka V, Gaudinová A, Vaňková R (2004a) Effect of exogenous cytokinins, auxins and adenine on cytokinin N-glucosylation and cytokinin oxidase/dehydrogenase activity in de-rooted radish seedlings. Plant Growth Regul 44:15–23

    Article  CAS  Google Scholar 

  • Blagoeva E, Dobrev PI, Jí M, Motyka V, Strnad M, Hanuš J, Vaňková R (2004b) Cytokinin N-glucosylation inhibitors suppress deactivation of exogenous cytokinins in radish, but their effect on active endogenous cytokinins is counteracted by other regulatory mechanisms. Physiol Plant 121:215–222

    Article  PubMed  CAS  Google Scholar 

  • Blakesley D (1991) Uptake and metabolism of 6-benzyladenine in shoot cultures of Musa and Rhododendron. Plant Cell Tiss Org Cult 25:69–74

    Article  CAS  Google Scholar 

  • Brzobohatý B, Moore I, Palme K (1994) Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol 26:1483–1497

    Article  PubMed  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integrat Plant Biol 52:98–111

    Article  CAS  Google Scholar 

  • Carimi F, Zottini M, Formentin E, Terzi M, Lo Schiavo F (2003) Cytokinins: new apoptotic inducers in plants. Planta 216:413–421

    PubMed  CAS  Google Scholar 

  • Chen C-M (1997) Cytokinin biosynthesis and interconversion. Physiol Plant 101:665–673

    Article  CAS  Google Scholar 

  • Chernyad’ev II (2009) The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). Appl Biochem Microbiol 45:351–362

    Article  Google Scholar 

  • Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Org Cult 106:279–288

    Article  CAS  Google Scholar 

  • De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim S-H (1997) Inhibition of cyclin-dependent kinases by purine analogues. Eur J Biochem 243:518–526

    Article  PubMed  Google Scholar 

  • De Klerk G-J, Guan H, Huisman P, Marinova S (2011) Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regul 63:175–185

    Article  CAS  Google Scholar 

  • Dwivedi S, Vanková R, Motyka V, Herrera C, Zizkova E, Auer C (2010) Characterization of Arabidopsis thaliana mutant ror-1 (roscovitine-resistant) and its utilization in understanding of the role of cytokinin N-glycosylation pathway in plants. Plant Growth Regul 61:231–242

    Article  CAS  Google Scholar 

  • Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452

    Article  PubMed  Google Scholar 

  • Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840

    Article  PubMed  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture, part 1: the technology. Exegetics Ltd, London

    Google Scholar 

  • Haberer G, Kieber JJ (2002) Cytokinins. New insights into a classic phytohormone. Plant Physiol 128:354–362

    Article  PubMed  CAS  Google Scholar 

  • Havlíček L, Hanuš J, Veselý J, Leclerc S, Meijer L, Shaw G, Strnad M (1997) Cytokinin-derived cyclin-dependent kinase inhibitors: synthesis and cdc2 inhibitory activity of Olomoucine and related compounds. J Med Chem 40:408–412

    Article  PubMed  Google Scholar 

  • Holub J, Hanuš J, Hanke DE, Strnad M (1998) Biological activity of cytokinins derived from ortho- and meta-hydroxybenzyladenine. Plant Growth Regul 26:109–115

    Article  CAS  Google Scholar 

  • Ivanova M, Novák O, Strnad M, Van Staden J (2006) Endogenous cytokinins in shoots of Aloe polyphylla cultured in vitro in relation to hyperhydricity, exogenous cytokinins and gelling agents. Plant Growth Regul 50:219–230

    Article  CAS  Google Scholar 

  • Kamínek M, Vaněk T, Motyka V (1987) Cytokinin activities of N6-benzyladenosine derivatives hydroxylated on the side-chain phenyl ring. J Plant Growth Regul 6:113–120

    Article  Google Scholar 

  • Kamínek M, Motyka V, Vaková R (1997) Regulation of cytokinin content in plant cells. Physiol Plant 101:689–700

    Article  Google Scholar 

  • Kamínek M, Březinov A, Gaudinová A, Motyka V, Vaňková R, Zaăímalová E (2000) Purine cytokinins: a proposal of abbreviations. Plant Growth Regul 32:253–256

    Article  Google Scholar 

  • Krikorian AD (1995) Hormones in tissue culture and micropropagation. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 774–796

    Google Scholar 

  • Letham DS, Palni LMS (1983) The biosynthesis and metabolism of cytokinins. Annu Rev Plant Physiol 34:163–197

    Article  CAS  Google Scholar 

  • Letham DS, Parker CW, Duke CC, Summons RE, MaCleod JK (1977) O-glucosylzeatin and related compounds—a new group of cytokinin metabolites. Ann Bot 41:261–263

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods in enzymology, vol 148. Academic Press, New York, pp 350–382

  • Meijer L, Borgne A, Mulner O, Chong JPJ, Blow JJ, Inagaki N, Inagaki M, Delcros J-G, Moulinoux J-P (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536

    Article  PubMed  CAS  Google Scholar 

  • Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Novák O, Tarkowski P, Tarkowská D, Dolezal K, Lenobel R, Strnad M (2003) Quantitative analysis of cytokinins in plants by liquid chromatography-single-quadrupole mass spectrometry. Anal Chim Acta 480:207–218

    Article  Google Scholar 

  • Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography—electrospray tandem mass spectrometry. Phytochemistry 69:2214–2224

    Article  PubMed  Google Scholar 

  • Ördög V, Stirk WA, Van Staden J, Novák O, Strnad M (2004) Endogenous cytokinins in three genera of microalgae from the Chlorophyta. J Phycol 40:88–95

    Article  Google Scholar 

  • Pasternak T, Miskolczi P, Ayaydin F, Mészáros T, Dudits D, Fehér A (2000) Exogenous auxin and cytokinin dependent activation of CDKs and cell division in leaf protoplast-derived cells of alfalfa. Plant Growth Regul 32:129–141

    Article  CAS  Google Scholar 

  • Planchais S, Glab N, Tréhin C, Perennes C, Bureau J-M, Meijer L, Bergounioux C (1997) Roscovitine, a novel cyclin-dependent kinase inhibitor, characterizes restriction point and G2/M transition in tobacco BY-2 cell suspension. Plant J 12:191–202

    Article  PubMed  CAS  Google Scholar 

  • Planchais S, Glab N, Inzé D, Bergounioux C (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 476:78–83

    Article  PubMed  CAS  Google Scholar 

  • Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  PubMed  CAS  Google Scholar 

  • Schmülling T (2004) Cytokinin. In: Lennarz WJ, Lane MD (eds) Encyclopedia of biological chemistry. Academic Press/Elsevier Science, New York, pp 1–6

    Google Scholar 

  • Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y Manns I (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252

    Article  PubMed  Google Scholar 

  • Schnablová R, Synková H, Vicánková A, Burketová L, Eder J, Cvikrová M (2006) Transgenic ipt tobacco overproducing cytokinins overaccumulates phenolic compounds during in vitro growth. Plant Physiol Biochem 44:526–534

    Article  PubMed  Google Scholar 

  • Spíchal L, Kryštof V, Paprskářová M, Lenobel R, Stýskala J, Binarová P, Cenklová V, De Veylder L, Inzé D, Kontopidis G, Fischer PM, Schmülling T, Strnad M (2007) Classical anticytokinins do not interact with cytokinin receptors but inhibit cyclin-dependent kinases. J Biol Chem 282:14356–14363

    Article  PubMed  Google Scholar 

  • Stoynova-Bakalova E, Petrov P (2009) Modulating zucchini cotyledon plate meristem activity by interactions between the cycline-dependent kinase inhibitor roscovitine and cytokinins. Plant Cell Tiss Org Cult 97:263–269

    Article  CAS  Google Scholar 

  • Strnad M (1997) The aromatic cytokinins. Physiol Plant 101:674–688

    Article  CAS  Google Scholar 

  • Strnad M, Hanus J, Vanek T, Kamínek M, Ballantine JA, Fussell B, Hanke DE (1997) Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus × canadensis Moench., cv. Robusta). Phytochemistry 45:213–218

    Article  CAS  Google Scholar 

  • Tao G-Q, Letham DS, Hocart CH, Summons RE (1991) Inhibitors of cytokinin metabolism III. The inhibition of cytokinin N-glucosylation in radish cotyledons. J Plant Growth Regul 10:179–185

    Article  CAS  Google Scholar 

  • Tréhin C, Planchais S, Glab N, Perennes C, Tregear J, Bergounioux C (1998) Cell cycle regulation by plant growth regulators: involvement of auxin and cytokinin in the re-entry of Petunia protoplasts into the cell cycle. Planta 206:215–224

    Article  PubMed  Google Scholar 

  • Upfold SJ, Van Staden J (1990) Cytokinins in cut carnation flowers. VII. The effect of zeatin and dihydrozeatin derivatives on flower longevity. Plant Growth Regul 9:77–81

    Article  CAS  Google Scholar 

  • Valero-Aracama C, Kane M, Wilson S, Philman N (2010) Substitution of benzyladenine with meta-topolin during shoot multiplication increases acclimatization of difficult- and easy-to-acclimatize sea oats (Uniola paniculata L.) genotypes. Plant Growth Regul 60:43–49

    Article  CAS  Google Scholar 

  • Van Staden J, Crouch NR (1996) Benzyladenine and derivatives—their significance and interconversion in plants. Plant Growth Regul 19:153–175

    Article  Google Scholar 

  • Vuylsteke DR (1998) Shoot-tip culture for the propagation, conservation, and distribution of Musa germplasm. International Institute of Tropical Agriculture, Ibadan

    Google Scholar 

  • Werbrouck SPO, Van der Jeugt B, Dewitte W, Prinsen E, Van Onckelen HA, Debergh PC (1995) The metabolism of benzyladenine in Spathiphyllum floribundum ‘Schott Petite’ in relation to acclimatisation problems. Plant Cell Rep 14:662–665

    Article  CAS  Google Scholar 

  • Werbrouck SPO, Strnad M, Van Onckelen HA, Debergh PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol Plant 98:291–297

    Article  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    Article  PubMed  CAS  Google Scholar 

  • Zaffari GR, Peres LEP, Kerbauy GB (1998) Endogenous levels of cytokinins, indoleacetic acid, abscisic acid, and pigments in variegated somaclones of micropropagated banana leaves. J Plant Growth Regul 17:59–61

    Article  CAS  Google Scholar 

  • Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P (2012) Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv. doi:10.1016/j.biotechadv.2011.1012.1003

  • Zatloukal M, Gemrotová M, Dolezal K, Havlícek L, Spíchal L, Strnad M (2008) Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg Med Chem 16:9268–9275

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The University of KwaZulu-Natal (Pietermaritzburg), South Africa and Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University (Olomouc), Czech Republic for providing financial support (Grant No. ED0007/01/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Van Staden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aremu, A.O., Bairu, M.W., Novák, O. et al. Physiological responses and endogenous cytokinin profiles of tissue-cultured ‘Williams’ bananas in relation to roscovitine and an inhibitor of cytokinin oxidase/dehydrogenase (INCYDE) treatments. Planta 236, 1775–1790 (2012). https://doi.org/10.1007/s00425-012-1721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1721-z

Keywords

Navigation