Skip to main content
Log in

A new strategy for construction of artificial miRNA vectors in Arabidopsis

  • Emerging Technologies
  • Published:
Planta Aims and scope Submit manuscript

Abstract

MicroRNAs are a class of small RNAs that specifically suppress their target genes by transcript cleavage or/and translation repression. Natural miRNA precursors have been used for the backbones of artificial miRNA precursors, which can give rise to expected artificial miRNAs with which to repress specific target genes. Artificial miRNA technology is a powerful tool to silence genes of interest. However, it is costly and time-consuming to construct artificial miRNA precursors by the use of an overlapping PCR method. We describe a new strategy to construct artificial miRNAs. A miRNA gene consists of three components (upstream, stem-loop, and downstream regions). Upstream and downstream regions of a natural miRNA transcript were amplified in conjunction with the introduction of two suitable restriction sites in the amplicons, which were inserted into a plasmid to form a median vector. Production of an artificial miRNA vector was easily achieved by insertion of an artificial stem-loop into the median vector. The artificial miRNAs produced by this method efficiently repressed their target genes in Arabidopsis. In addition, two artificial miRNA constructs were expressed as one polycistron driven by the CaMV 35S promoter and their targets were suppressed simultaneously in Arabidopsis. Thus, artificial miRNAs are a powerful tool with which to analyze rapidly the functions of not only a single gene or multiple homologous genes, but also multiple non-homologous genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

miRNA:

MicroRNA

amiRNA:

Artificial microRNA

pri-miRNA:

Primary microRNA transcript

nt:

Nucleotide

DCL1:

Dicer-like 1

AGO1:

Argonaute 1

FT:

Flowering locus T

TRY:

TRIPTYCHON

ETC:

ENHANCER OF TRY AND CPC 2

CPC:

CAPRICE

RNAi:

RNA interference

References

  • Altuvia Y, Landgrf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuscl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697–2760

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  PubMed  CAS  Google Scholar 

  • Gou D, Zhang H, Baviskar P, Liu L (2007) Primer extension-based method for the generation of a siRNA/miRNA expression vector. Physiol Genomics 31:554–562

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, Hur K, Yoo MW, Lee HJ, Yang HK, Kim VN (2009) Functional links between clustered microRNA: suppression of cell-cycle inhibitors by microRNA cluster in gastric cancer. Nucleic Acids Res 37:1672–1681

    Article  PubMed  CAS  Google Scholar 

  • Kirik V, Simon M, Wester K, Schiefelbein J, Hulskamp M (2004) ENHANCER of TRY and CPC 2 (ETC2) reveals redundancy in the region-specific control of trichome development of Arabidopsis. Plant Mol Biol 55:389–398

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  PubMed  CAS  Google Scholar 

  • Liang G, Yang FX, Yu DQ (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057

    PubMed  CAS  Google Scholar 

  • Merchan F, Boualem A, Crespi M, Frugier F (2009) Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins. Genome Biol 10:R136

    Article  PubMed  Google Scholar 

  • Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58:165–174

    Article  PubMed  CAS  Google Scholar 

  • Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, Thumfahrt J, Jurgens G, Hülskamp M (2002) TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J 21:5036–5046

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Sen GL, Blau HM (2006) A brief history of RNAi: the silence of the genes. FASEB J 20:1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Song L, Axtell MJ, Fedoroff NV (2010) RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20:37–41

    Article  PubMed  CAS  Google Scholar 

  • Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339:327–335

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  PubMed  CAS  Google Scholar 

  • Wang Z (2010) MicroRNA: a matter of life or death. World J Biol Chem 1:41–54

    Article  PubMed  CAS  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Science Foundation of the Ministry of Agriculture of the Peoples’ Republic of China (2009ZX08009-066B) and the National Natural Science Foundation of China (Grant No. 31100186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diqiu Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 118 kb)

Supplementary material 2 (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, G., He, H., Li, Y. et al. A new strategy for construction of artificial miRNA vectors in Arabidopsis . Planta 235, 1421–1429 (2012). https://doi.org/10.1007/s00425-012-1610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1610-5

Keywords

Navigation