Skip to main content
Log in

Expression, subcellular localization, and cis-regulatory structure of duplicated phytoene synthase genes in melon (Cucumis melo L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Carotenoids perform many critical functions in plants, animals, and humans. It is therefore important to understand carotenoid biosynthesis and its regulation in plants. Phytoene synthase (PSY) catalyzes the first committed and rate-limiting step in carotenoid biosynthesis. While PSY is present as a single copy gene in Arabidopsis, duplicated PSY genes have been identified in many economically important monocot and dicot crops. CmPSY1 was previously identified from melon (Cucumis melo L.), but was not functionally characterized. We isolated a second PSY gene, CmPSY2, from melon in this work. CmPSY2 possesses a unique intron/exon structure that has not been observed in other plant PSYs. Both CmPSY1 and CmPSY2 are functional in vitro, but exhibit distinct expression patterns in different melon tissues and during fruit development, suggesting differential regulation of the duplicated melon PSY genes. In vitro chloroplast import assays verified the plastidic localization of CmPSY1 and CmPSY2 despite the lack of an obvious plastid target peptide in CmPSY2. Promoter motif analysis of the duplicated melon and tomato PSY genes and the Arabidopsis PSY revealed distinctive cis-regulatory structures of melon PSYs and identified gibberellin-responsive motifs in all PSYs except for SlPSY1, which has not been reported previously. Overall, these data provide new insights into the evolutionary history of plant PSY genes and the regulation of PSY expression by developmental and environmental signals that may involve different regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABRE-CE:

ABA-response element–coupling element

CTAB:

Cetyltrimethyl ammonium bromide

DAP:

Days after pollination

EST:

Expressed sequence tag

FPP:

Farnesyl pyrophosphate

GGPP:

Geranylgeranyl pyrophosphate

GST:

Glutathione-S-transferase

HSE:

High temperature responsive element

IPTG:

Isopropyl-β-d-thiogalactoside

LTR:

Low temperature responsiveness element

LB:

Luria Broth

NJ:

Neighbor-joining

PIF:

Phytochrome interacting factor

PSY:

Phytoene synthase

RACE:

Rapid amplification of cDNA ends

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SNP:

Single nucleotide polymorphism

TCA:

Trichloroacetic acid

TILLING:

Targeting induced local lesions IN genomes

References

  • Alves-Rodrigues A, Shao A (2004) The science behind lutein. Toxicol Lett 150:57–83

    Article  PubMed  CAS  Google Scholar 

  • Arango J, Wüst F, Beyer P, Welsch R (2010) Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta 232:1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  • Bonk M, Hoffmann B, Von Lintig J, Schledz M, Al-Babili S, Hobeika E, Kleinig H, Beyer P (1997) Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly. Eur J Biochem 247:942–950

    Article  PubMed  CAS  Google Scholar 

  • Bramley P, Teulieres C, Blain I, Bird C, Schuch W (1992) Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through expression of antisense RNA to pTOM5. Plant J 2:343–349

    Article  CAS  Google Scholar 

  • Bramley PM (2002) Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot 53:2107–2113

    Article  PubMed  CAS  Google Scholar 

  • Cazzonelli C, Pogson B (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274

    Article  PubMed  CAS  Google Scholar 

  • Clarke J (2009) Cetyltrimethyl Ammonium Bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5177

  • Cunningham FJ, Gantt E (2007) A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes: Adonis aestivalis as a case study. Phytosynth Res 92:245–259

    Article  CAS  Google Scholar 

  • Dahmani-Mardas F, Troadec C, Boualem A, Lévêque S, Alsadon A, Aldoss A, Dogimont C, Bendahmane A (2010) Engineering melon plants with improved fruit shelf life using the TILLING approach. PLoS One 5:e15776

    Article  PubMed  CAS  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  PubMed  CAS  Google Scholar 

  • Dogbo O, Laferriére A, D’Harlingue A, Camara B (1988) Carotenoid biosynthesis: Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc Natl Acad Sci USA 85:7054–7058

    Article  PubMed  CAS  Google Scholar 

  • Fraser P, Kiano J, Truesdale M, Schuch W, Bramley P (1999) Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol Biol 40:687–698

    Article  PubMed  CAS  Google Scholar 

  • Fraser P, Schuch W, Bramley P (2000) Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts—partial purification and biochemical properties. Planta 211:361–369

    Article  PubMed  CAS  Google Scholar 

  • Fray R, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  PubMed  CAS  Google Scholar 

  • Gallagher C, Matthews P, Li F, Wurtzel E (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses (Poaceae). Plant Physiol 135:1776–1783

    Article  PubMed  CAS  Google Scholar 

  • Giorio G, Stigliani A, D’Ambrosio C (2008) Phytoene synthase genes in tomato (Solanum lycopersicum L.)—new data on the structures, the deduced amino acid sequences and the expression patterns. FEBS J 275:527–535

    Article  PubMed  CAS  Google Scholar 

  • Goldsbrough A, Albrecht H, Stratford R (1993) Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3:563–571

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez V, Rodriguez-Moreno L, Centeno E, Benjak A, Garcia-Mas J, Puigdomenech P, Aranda M (2010) Genome-wide BAC-end sequencing of Cucumis melo using two BAC libraries. BMC Genomics 11:618

    Article  PubMed  Google Scholar 

  • Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y, Schaffer AA, Katzir N (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet

  • Hayward A, Stirnberg P, Beveridge CA, Leyser O (2009) Interactions between auxin and strigolactone in shoot shoot branching control. Plant Physiol 15:400–412

    Article  Google Scholar 

  • Inoue K, Furbee K, Uratsu S, Kato M, Dandekar A, Ikoma Y (2006) Catalytic activities and chloroplast import of carotenogenic enzymes from citrus. Physiol Planta 127:561–570

    Article  CAS  Google Scholar 

  • Karvouni Z, John I, Taylor J, Watson C, Turner A, Grierson D (1995) Isolation and characterization of a melon cDNA clone encoding phytoene synthase. Plant Mol Biol 27:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Klotz K, Lagrimini L (1996) Phytohormone control of the tobacco anionic peroxidase promoter. Plant Mol Biol 31:565–573

    Article  PubMed  CAS  Google Scholar 

  • Laur L, Tian L (2011) Provitamin A and vitamin C content in selected California-grown cantaloupe and honeydew melons and imported melons. J Food Comp Anal 24:194–201

    Article  CAS  Google Scholar 

  • Lawrence S, Cline K, Moore G (1993) Chromoplast-targeted proteins in tomato (Lycopersicon esculentum Mill.) fruit. Plant Physiol 102:789–794

    PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Li F, Tsfadia O, Wurtzel E (2009) The phytoene synthase gene family in the Grasses: subfunctionalization provides tissue-specific control of carotenogenesis. Plant Signal Behav 4:208–211

    Article  PubMed  Google Scholar 

  • Li F, Vallabhaneni R, Wurtzel E (2008a) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:1333–1345

    Article  PubMed  CAS  Google Scholar 

  • Li F, Vallabhaneni R, Yu J, Rocheford T, Wurtzel E (2008b) The maize phytoene synthase gene family: overlapping roles for carotenogenesis, photomorphogenesis and thermal stress tolerance. Plant Physiol 147:1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Liu G, Song Y, Yin F, Hensler M, Jeng W, Nizet V, Wang A, Oldfield E (2008) A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319:1391–1394

    Article  PubMed  CAS  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Li L (2008) Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Biol 50:778–785

    Article  CAS  Google Scholar 

  • Martin C, Ellis N, Rook F (2010) Do transcription factors play special roles in adaptive variation? Plant Physiol 154:506–511

    Article  PubMed  CAS  Google Scholar 

  • Nunez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, Cantliffe DJ (2008) Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28:13–55

    Article  PubMed  CAS  Google Scholar 

  • Rouster J, Leah R, Mundyt J, Cameron-Mills V (1997) Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J 11:513–523

    Article  PubMed  CAS  Google Scholar 

  • Schledz M, Al-Balili S, von Lintig J, Haubruck H, Rabbani S, Beyer P (1996) Phytoene synthase from Narcissus pseudonarcissus: functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering. Plant J 10:781–792

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Qin X, Zeevaart J (2001) Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276:25208–25211

    Article  PubMed  CAS  Google Scholar 

  • Scolnik P, Bartley G (1994) Nucleotide sequence of an Arabidopsis cDNA for phytoene synthase. Plant Physiol 104:1471–1472

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Ortiz G, Huq E, Rodríguez-Concepción M (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci USA 107:11626–11631

    Article  PubMed  CAS  Google Scholar 

  • Tran D, Haven J, Qiu W, Polle J (2009) An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta 229:723–729

    Article  PubMed  CAS  Google Scholar 

  • Welsch R, Arango J, Bar C, Salazar B, Al-Babili S, Beltran J, Chavarriaga P, Ceballos H, Tohme J, Beyer P (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

    Article  PubMed  CAS  Google Scholar 

  • Welsch R, Maass D, Voegel T, DellaPenna D, Beyer P (2007) Transcription factor RAP2.2 and its interacting partner SINAT2:stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol 145:1073–1085

    Article  PubMed  CAS  Google Scholar 

  • Welsch R, Medina J, Giuliano G, Beyer P, von Lintig J (2003) Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta 216:523–534

    PubMed  CAS  Google Scholar 

  • Welsch R, Wüst F, Bär C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147:367–380

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nadia Ono for critical reading of the manuscript. We would also like to thank Karen Arlin (Harris-Moran) for proving us with melon seeds, Dr. Florence Negre-Zakharov and Minmin Wang for providing the field-grown Navigator melon fruits, and Dr. Francis Cunningham (University of Maryland) for providing the pAC-85b and pAC-BETA plasmids. This work was supported by the California Melon Research Board and the UC Davis New Faculty Startup Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Tian.

Additional information

Genomic sequences of CmPSY1 and CmPSY2 have been deposited in the GenBank under JF745118 and JF745117, respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 Primer sequences used for cloning, 3’ RACE, inverse PCR and real-time qPCR analyses.

Table S2 Light and circadian regulated cis-elements identified from Arabidopsis, tomato and melon PSY promoters.

Table S3 The frequencies of cis-elements identified in the 5’-flanking region (~1,500 bp) of Arabidopsis, tomato and melon PSYs in the fully-sequenced Arabidopsis genome.

Fig. S1 Transcript levels of melon housekeeping genes in various melon tissues presented as absolute Ct values.

Supplementary material 1 (PDF 41 kb)

Supplementary material 2 (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, X., Coku, A., Inoue, K. et al. Expression, subcellular localization, and cis-regulatory structure of duplicated phytoene synthase genes in melon (Cucumis melo L.). Planta 234, 737–748 (2011). https://doi.org/10.1007/s00425-011-1442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1442-8

Keywords

Navigation