Skip to main content
Log in

Plant response to stress meets dedifferentiation

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant response to various stress conditions often results in expression of common genes, known as stress-responsive/inducible genes. Accumulating data point to a common, yet elusive process underlying the response of plant cells to stress. Evidence derived from transcriptome profiling of shoot apical meristem stem cells, dedifferentiating protoplast cells as well as from senescing cells lends support to a model in which a common response of cells to certain biotic and abiotic stresses converges on cellular dedifferentiation whereby cells first acquire a stem cell-like state before assuming a new fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

iPSCs:

Induced pluripotent stem cells

SAM:

Shoot apical meristem

SAGs:

Senescence-associated genes

TF:

Transcription factor

NHEJ:

Non-homologous end-joining

References

  • Andersson A, Keskitalo J, Sjödin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24

    Article  PubMed  Google Scholar 

  • Avivi Y, Morad V, Ben-Meir H, Zhao J, Kashkush K, Tzfira T, Citovsky V, Grafi G (2004) Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev Dyn 230:12–22

    Article  CAS  PubMed  Google Scholar 

  • Balazadeh S, Riano-Pacho DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10:63–65

    Article  PubMed  Google Scholar 

  • Barnett NM, Naylor AW (1966) Amino acid and protein metabolism in Bermuda grass during water stress. Plant Physiol 41:1222–1230

    Article  CAS  PubMed  Google Scholar 

  • Ben-Zioni A, Itai C, Vaadia Y (1967) Water and salt stresses, kinetin and protein synthesis in tobacco leaves. Plant Physiol 42:361–365

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotechnol J 1:3–22

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Casati P, Campi M, Chu F, Suzuki N, Maltby D, Guan S, Burlingame AL, Walbot V (2008) Histone acetylation and chromatin remodeling are required for UV-B-dependent transcriptional activation of regulated genes in maize. Plant Cell 20:827–842

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ, Tian L (2007) Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim Biophys Acta 1769:295–307

    CAS  PubMed  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  CAS  PubMed  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Article  CAS  PubMed  Google Scholar 

  • Damri M, Granot G, Ben-Meir H, Avivi Y, Plaschkes I, Chalifa-Caspi V, Wolfson M, Fraifeld V, Grafi G (2009) Senescing cells share common features with dedifferentiating cells. Rejuvenation Res 12:435–443

    Article  CAS  PubMed  Google Scholar 

  • de Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454

    Article  PubMed  Google Scholar 

  • Dhindsa RS, Cleland RE (1975) Water stress and protein synthesis. II. Interaction between water stress, hydrostatic pressure, and abscisic acid on the pattern of protein synthesis in Avena coleoptiles. Plant Physiol 55:782–785

    Article  CAS  PubMed  Google Scholar 

  • Do JH, Choi DK (2008) Clustering approaches to identifying gene expression patterns from DNA microarray data. Mol Cells 25:279–288

    CAS  PubMed  Google Scholar 

  • Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229

    Article  CAS  PubMed  Google Scholar 

  • Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RD, Buetow KH, Gingeras TR, Misteli T, Meshorer E (2008) Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2:437–447

    Article  CAS  PubMed  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  CAS  PubMed  Google Scholar 

  • Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MF, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642

    Article  CAS  PubMed  Google Scholar 

  • Gifford EM Jr, Steward KD (1967) Ultrastructure of the shoot apex of Chenopodium album and certain other seed plants. J Cell Biol 33:131–142

    Article  PubMed  Google Scholar 

  • Grafi G (2004) How cells dedifferentiated: a lesson from plants. Dev Biol 268:1–6

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Hay ED (1959) Electron microscopic observations of muscle dedifferentiation in regenerating Amblystoma limbs. Dev Biol 1:555–585

    Article  Google Scholar 

  • Jamet E, Durr A, Parmentier Y, Criqui MC, Fleck J (1990) Is ubiquitin involved in the dedifferentiation of higher plant cells? Cell Differ Dev 29:37–46

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  CAS  PubMed  Google Scholar 

  • Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546

    Article  CAS  PubMed  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  CAS  PubMed  Google Scholar 

  • Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129

    Article  CAS  PubMed  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320

    Article  Google Scholar 

  • Tessadori F, Chupeau MC, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V (2007) Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 120:1200–1208

    Article  CAS  PubMed  Google Scholar 

  • Valente P, Tao W, Verbelen J-P (1998) Auxins and cytokinins control DNA endoreduplication and deduplication in single cells of tobacco. Plant Sci 134:207–215

    Article  CAS  Google Scholar 

  • Venkatarayappa T, Fletcher RA, Thompson JE (1984) Retardation and reversal of senescence in bean leaves by benzyladenine and decapitation. Plant Cell Physiol 25:407–418

    CAS  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252

    Article  CAS  PubMed  Google Scholar 

  • Williams L, Zhao J, Morozova N, Li Y, Avivi Y, Grafi G (2003) Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev Dyn 228:113–120

    Article  CAS  PubMed  Google Scholar 

  • Yadav RK, Girke T, Pasala S, Xie M, Reddy GV (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA 106:4941–4946

    Article  CAS  PubMed  Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol 13(1):1–9

    Article  Google Scholar 

  • Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Grafi G (2001) Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S phase. J Biol Chem 276:22772–22778

    Article  CAS  PubMed  Google Scholar 

  • Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5:873–878

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Esti Yeger-Lotem for bioinformatics discussions and Yigal Avivi for critical reading of the manuscript. This work was supported by The Israel Science Foundation (ISF) grant No. 476/09 to G.G. and V.C.-C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon Grafi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (XLS 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grafi, G., Chalifa-Caspi, V., Nagar, T. et al. Plant response to stress meets dedifferentiation. Planta 233, 433–438 (2011). https://doi.org/10.1007/s00425-011-1366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1366-3

Keywords

Navigation