Skip to main content
Log in

Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

GDSL-type lipase is a hydrolytic enzyme whose amino acid sequence contains a pentapeptide motif (Gly-X-Ser-X-Gly) with active serine (Ser). Pepper GDSL-type lipase (CaGLIP1) gene was isolated and functionally characterized from pepper leaf tissues infected by Xanthomonas campestris pv. vesicatoria (Xcv). The CaGLIP1 protein was located in the vascular tissues of Arabidopsis root. The CaGLIP1 gene was preferentially expressed in pepper leaves during the compatible interaction with Xcv. Treatment with salicylic acid, ethylene and methyl jasmonate induced CaGLIP1 gene expression in pepper leaves. Sodium nitroprusside, methyl viologen, high salt, mannitol-mediated dehydration and wounding also induced early and transient CaGLIP1 expression in pepper leaf tissues. Virus-induced gene silencing of CaGLIP1 in pepper conferred enhanced resistance to Xcv, accompanied by the suppressed expression of basic PR1 (CaBPR1) and defensin (CaDEF1) genes. The CaGLIP1 lipase produced in Escherichia coli hydrolyzed the substrates of short and long chain nitrophenyl esters. The CaGLIP1-overexpressing Arabidopsis exhibited enhanced hydrolytic activity toward short and long chain nitrophenyl ester, as well as enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato and the biotrophic oomycete Hyaloperonospora parasitica. SA-induced expression of AtPR1 and AtGST1, also was delayed in CaGLIP1-overexpressing plants by SA application. During seed germination and plant growth, the CaGLIP1 transgenic plants showed drought tolerance and differential expression of drought- and abscisic acid (ABA)-inducible genes AtRD29A, AtADH and AtRab18. ABA treatment differentially regulated seed germination and gene expression in wild-type and CaGLIP1 transgenic Arabidopsis. Overexpression of CaGLIP1 also regulated glucose- and oxidative stress signaling. Together, these results indicate that CaGLIP1 modulates disease susceptibility and abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CaMV:

Cauliflower mosaic virus

MeJA:

Methyl jasmonate

MV:

Methyl viologen

SA:

Salicylic acid

SNP:

Sodium nitroprusside

VIGS:

Virus-induced gene silencing

Xcv :

Xanthomonas campestris pv. vesicatoria

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    Article  PubMed  CAS  Google Scholar 

  • Benhamou N, Grenier J, Asselin A, Legrand M (1989) Immunoglod localization of β-1,3-glucanases in two plants infected by vascular wilt fungi. Plant Cell 1:1209–1221

    Article  PubMed  CAS  Google Scholar 

  • Berto P, Comménil P, Belingheri L, Dehorter B (1999) Occurrence of a lipase in spores of Alternaria brassicicola with a crucial role in the infection of cauliflower leaves. FEMS Microbiol Lett 180:183–189

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brick DJ, Brumlik MJ, Buckley JT, Cao JX, Davies PC, Misra S, Tranbarger TJ, Upton C (1995) A new family of lipolytic enzymes with members in rice, Arabidopsis and maize. FEBS Lett 377:475–480

    Article  PubMed  CAS  Google Scholar 

  • Camera SL, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M, Thierry H (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J 44:810–825

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Heinstein PF, Low PS (1996) Activation of phospholipase A by plant defense elicitors. Plant Physiol 110:979–986

    PubMed  CAS  Google Scholar 

  • Cheong YH, Kim KN, Pandy GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol Cell 17:377–380

    CAS  Google Scholar 

  • Chung ES, Oho SK, Park MJ, Choi D (2007) Expression and promoter analyses of pepper CaCDPK4 (Capsicum annuum calcium dependent protein kinase 4) during plant defense response to incompatible pathogen. Plant Pathol J 23: 76–89

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • de Torres Zabala M, Fernandez-Delmond I, Niittyla T, Sanchez P, Grant M (2002) Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent and avirulent Pseudomonas isolates. Mol Plant-Microbe Interact 15:808–816

    Article  Google Scholar 

  • de Torres Zabala M, Truman W, Bennett M, Lafforgue G, Mansfield JW, Egea PR, Bögre L Grant M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26:1434–1443

    Article  PubMed  CAS  Google Scholar 

  • Dekker BJW, Schuurmans JAMJ, Smeekens SCM (2004) Glucose delays seed germination in Arabidopsis thaliana. Planta 218:579–588

    Article  CAS  Google Scholar 

  • Do HM, Hong JK, Jung HW, Ham JH, Hwang BK (2003) Expression of peroxidase-like genes, H2O2 production and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. vesicatoria in Capsicum annuum. Mol Plant-Microbe Interact 16:196–205

    Article  PubMed  CAS  Google Scholar 

  • Do HM, Lee SC, Jung HW, Sohn KH, Hwang BK (2004) Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Sci 166:1297–1305

    Article  CAS  Google Scholar 

  • Faustinella F, Smith LC, Semenkovich CF, Chan L (1991) Structural and functional roles of highly conserved serines in human lipoprotein lipase. J Biol Chem 266:9481–9485

    PubMed  CAS  Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Fischer U, Men S, Grebe M (2004) Lipid function in plant cell polarity. Curr Opin Plant Biol 7:670–676

    Article  PubMed  CAS  Google Scholar 

  • Gazzarrini S, McCourt P (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol 4:387–391

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Hwang BK (2002) Induction by pathogen, salt and drought of a basic class II chitinase mRNA and in situ localization in pepper (Capsicum annuum). Physiol Plant 114:549–558

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Hwang BK (2005a) Functional characterization of PR-1 protein, β-1,3-glucanase and chitinase genes during defense response to biotic and abiotic stresses in Capsicum annuum. Plant Pathol J 21:195–206

    Google Scholar 

  • Hong JK, Hwang BK (2005b) Induction of enhanced disease resistance and oxidative stress tolerance by overexpression of pepper basic PR-1 gene in Arabidopsis. Physiol Plant 124:267–277

    Article  CAS  Google Scholar 

  • Hong JK, Jung HW, Kim YJ, Hwang BK (2000a) Pepper gene encoding a basic class II chitinase is inducible by pathogen and ethephon. Plant Sci 159:39–49

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, Wang TW, Hudak KA, Schade F, Froese CD, Thompson JE (2000b) An ethylene-induced cDNA encoding a lipase expressed at the onset of senescence. Proc Natl Acad Sci USA 97:8717–8722

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Jung HW, Lee BK, Lee SC, Lee YK, Hwang BK (2004) An osmotin-like protein gene, CAOSM1, from pepper: differential expression and in situ localization in pepper tissues during pathogen infection and abiotic stresses. Physiol Mol Plant Pathol 64:301–310

    Article  CAS  Google Scholar 

  • Hong JK, Lee SC, Hwang BK (2005) Activation of pepper basic PR-1 gene promoter during defense signaling to pathogen, abiotic and environmental stresses. Gene 356:169–180

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Choi HW, Hwang IS, Hwang BK (2007) Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance. Plant Mol Biol 63:571–588

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Wang Y, Bowers C, Ma H (2003) Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis. Plant Mol Biol 53:545–563

    Article  PubMed  CAS  Google Scholar 

  • Jakab G, Manrique A, Zimmerli L, Métraux JP, Mauchi-Mani B (2003) Molecular characterization of a novel lipase-like pathogen-inducible gene family of Arabidopsis. Plant Physiol 132:2230–2239

    Article  PubMed  CAS  Google Scholar 

  • Jung HW, Hwang BK (2000) Isolation, partial sequencing, and expression of pathogenesis-related cDNA genes from pepper leaves infected by Xanthomonas campestris pv. vesicatoria. Mol Plant-Microbe Interact 13:136–142

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Takahashi S, Shinozaki K (2001) Involvement of a novel Arabidopsis phospholipase D, AtPLDδ, in dehydration-inducible accumulation of phosphatidic acid in stress signaling. Plant J 26:595–605

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Hong JK, Lee SC, Sohn KH, Jung HW, Hwang BK (2004) CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Mol Biol 55:883–904

    PubMed  CAS  Google Scholar 

  • Kim YJ, Hwang BK (2000) Pepper gene encoding a basic pathogenesis-related 1 protein is pathogen and ethylene inducible. Physiol Plant 108:51–60

    CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of phycocyanin and fluorescin. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA 100:16101–16106

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee YK, Hippe-Sanwald S, Lee SC, Hohenberg H, Hwang BK (2000) In situ localization of PR-1 mRNA and PR-1 protein in compatible and incompatible interactions of pepper stems with Phytophthora capsici. Protoplasma 211:64–75

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  PubMed  CAS  Google Scholar 

  • Lo M, Taylor C, Wang L, Nowack L, Wang TW, Thompson J (2004) Characterization of an ultraviolet B-induced lipase in Arabidopsis. Plant Physiol 135:947–958

    Article  PubMed  CAS  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    Article  PubMed  CAS  Google Scholar 

  • Matsui K, Fukutomi S, Ishii M, Kajiwara T (2004) A tomato lipase homologous to DAD1 (LeLID1) is induced in post-germinative growing stage and encodes a triacylglyceral lipase. FEBS Lett 569:195–200

    Article  PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Fujita M, Ishida J, Nakashima M, Enju A, Sakurai T, Satou M, Kamiya A, Park P, Kobayashi M, Shinozaki K (2003) Expression profiles of Arabidopsis Phospholipase A IIA gene in response to biotic and abiotic stresses. Plant Cell Physiol 44:1247–1252

    Google Scholar 

  • Narvaez-Vasquez J, Ryan CA (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218:360–369

    Article  PubMed  CAS  Google Scholar 

  • Nimchuk Z, Marois E, Kjemtrup S, Leister RT, Katagiri F, Dangle JL (2000) Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 101:353–363

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    Article  PubMed  CAS  Google Scholar 

  • Oh BJ, Jeon WB, Kim KS, Lee HS, Cheong SJ, Cho SM, Kim SM, Pyo BS, Kim YS (2004) Differential induction of PepTLP expression via complex regulatory system against fungal infection, wound, and jasmonic acid treatment during pre- and post-ripening of nonclimateric pepper fruit. Plant Pathol J 20:258–263

    Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim SY, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  PubMed  CAS  Google Scholar 

  • Oh SK, Cheong JJ, Hwang I, Choi D (1999) Similarity of tobacco mosaic virus-induced hypersensitive cell death and copper-induced abiotic cell death in tobacco. Plant Pathol J 15:8–13

    Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211

    Article  PubMed  CAS  Google Scholar 

  • Pringle D, Dickstein R (2004) Purification of ENOD8 proteins from Medicago sativa root nodules and their characterization as esterases. Plant Physiol Biochem 42:73–79

    Article  PubMed  CAS  Google Scholar 

  • Reignault P, Frost LN, Richardson H, Daniels MJ, Jones JD, Parker JE (1996) Four Arabidopsis RPP loci controlling resistance to the Noco2 isolate of Peronospora parasitica map to regions known to contain other RPP recognition specificities. Mol Plant-Microbe Interact 9:464–473

    PubMed  CAS  Google Scholar 

  • Reumann S, Ma C, Lemke S, Babujee L (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136:2587–2608

    Article  PubMed  CAS  Google Scholar 

  • Ruiz C, Falcocchio S, Xoxi E, Pastor FIJ, Diaz P, Saso L (2004) Activation and inhibition of Candida rugosa and Bacillus-related lipases by saturated fatty acids, evaluated by a new colorimetric microassay. Biochim Biophys Acta 1672:184–191

    PubMed  CAS  Google Scholar 

  • Rustérucci C, Aviv DH, Holt III BF, Dangle JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13:2211–2224

    Article  PubMed  Google Scholar 

  • Sang Y, Cui D, Wang D (2001) Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol 126:1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    Article  PubMed  CAS  Google Scholar 

  • Tameling WIL, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen BJC (2002) The tomato R gene products I-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14:2929–2939

    Article  PubMed  CAS  Google Scholar 

  • Titarenko E, Rojo E, León J, Sánchez-Serrano JJ (1997) Jasmonic acid-dependent and -independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol 115:817–826

    Article  PubMed  CAS  Google Scholar 

  • To JPC, Reiterm WD, Gibson SI (2002) Mobilization of seed storage lipid by Arabidopsis seedlings is retarded in the presence of exogenous sugars. BMC Plant Biol 2:4

    Article  PubMed  Google Scholar 

  • Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: Finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 26:15362–15367

    Article  Google Scholar 

  • Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20:178–179

    Article  PubMed  CAS  Google Scholar 

  • Voigt CA, Schäfer W, Salomon S (2005) A secreted lipase from Fusarium graminearum is a virulence factor required for infection of cereals. Plant J 42:364–375

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Zien CA, Afitlhile M, Welti R, Hildebrand DF, Wang X (2000) Involvement of phospholipase D in wounded-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2002) Phospholipase D in hormonal and stress signaling. Curr Opin Plant Biol 5:408–414

    Article  PubMed  CAS  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. J Biol Chem 277:31994–32002

    Article  PubMed  CAS  Google Scholar 

  • Yaeno T, Matsuda O, Iba K (2004) Role of chloroplast trienoic fatty acids in plants disease defense responses. Plant J 40:931–941

    Article  PubMed  CAS  Google Scholar 

  • Young SA, Guo A, Guikema JA, White FF, Leach JE (1995) Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. oryzae. Plant Physiol 107:1333–1341

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Wang X (2004) Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem 279:1794–1800

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (CG1133) from the Crop Functional Genomics Center of the twenty-first Century, the Frontier Research Program funded by the Ministry of Science and Technology of Republic of Korea, a grant from the Center for Plant Molecular Genetics and Breeding Research, Seoul National University, Korea and a grant (20070401034028) from the BioGreen 21 Program, Rural Development Administration, Korea. We thank Dr. S. P. Dinesh-Kumar for the pTRV1 and pTRV2 vectors, and Dr. Kay Gillian for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Kook Hwang.

Additional information

The nucleotide sequence data reported here has been deposited in the GenBank database under the accession number AY775336.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J.K., Choi, H.W., Hwang, I.S. et al. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227, 539–558 (2008). https://doi.org/10.1007/s00425-007-0637-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0637-5

Keywords

Navigation