Skip to main content

Advertisement

Log in

Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phytochelatins (PCs) are heavy metal binding peptides that play an important role in sequestration and detoxification of heavy metals in plants. In this study, our goal was to develop transgenic plants with increased tolerance for and accumulation of heavy metals from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A 35S promoter fused to a FLAG–tagged AtPCS1 cDNA was expressed in Indian mustard, and transgenic lines, designated pc lines, were evaluated for tolerance to and accumulation of Cd and Zn. Transgenic plants with moderate AtPCS1 expression levels showed significantly higher tolerance to Cd and Zn stress, but accumulated significantly less Cd and Zn than wild type plants in both shoot and root tissues. However, transgenic plants with highest expression of the transgene did not exhibit enhanced Cd and Zn tolerance. Shoots of Cd-treated pc plants had significantly higher levels of phytochelatins and thiols than wild-type plants. Significantly lower concentrations of gluthatione in Cd-treated shoot and root tissues of transgenic plants were observed. Moderate expression levels of phytochelatin synthase improved the ability of Indian mustard to tolerate certain levels of heavy metals, but at the same time did not increase the accumulation potential for Cd and Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GSH:

Gluthatione

NPT:

Non protein thiols

PCs:

Phytochelatins

References

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Meth Enzymol 113:548–555

    Article  PubMed  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    Article  PubMed  CAS  Google Scholar 

  • Bergmann L, Rennenberg H (1993) Gluthatione metabolism in plants. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and sulfur assimilation in higher plants. SPB Academic Publishers, The Hague, Netherland, pp 109–123

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agent. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chen YX, He YF, Yang Y, Yu YL, Zheng SJ, Tian GM, Luo YM, Wong MH (2003) Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils. Chemosphere 40:781–787

    Article  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  CAS  Google Scholar 

  • Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux P (1999) Elevated gluthatione biosynthetic capacity in the chloroplasts of the tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11:1277–1291

    Article  PubMed  CAS  Google Scholar 

  • De Vos RCH, Vonk MJ, Voojis R, Schat H (1992) Gluthatione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    PubMed  Google Scholar 

  • Ebbs SD, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. and C. Presl). Planta 214:635–640

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Fassel VA (1978) Quantitative elemental analyses by plasma emission spectroscopy. Science 202:183–191

    Article  PubMed  CAS  Google Scholar 

  • Gasic K, Korban SS (2005) Nonspecific binding of monoclonal anti-flag M2 antibody in Indian mustard (Brassica juncea). Plant Mol Biol Rep 23:9–16

    Google Scholar 

  • Gasic K, Korban SS (2006) Heavy metal stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, Berlin Heidelberg New York, pp 219–254

    Chapter  Google Scholar 

  • Gisbert C, Ros R, de Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  PubMed  CAS  Google Scholar 

  • Greger M, Löfstedt M (2004) Comparison of uptake and distribution of Cd in different cultivars of bread and durum wheat. Crop Sci 44:501–507

    CAS  Google Scholar 

  • Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by specific (-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Gupta SC, Goldsbrough PB (1991) Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol 97:306–312

    PubMed  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Mehrang AA (2001) Copper and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839

    Article  PubMed  CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 5:1232–1238

    Article  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003a) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  CAS  Google Scholar 

  • Lee S, Petros D, Moon JS, Ko TS, Goldsbrough PB, Korban SS (2003b) Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol Biochem 41:903–910

    Article  CAS  Google Scholar 

  • Leopold I, Günther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50:1323–1328

    Article  CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog T (1962) A revised medium for growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Murphy A, Taiz L (1995) A new vertical mesh transfer technique for metal-tolerance studies in arabidopsis: ecotypic variation and copper sensitive mutants. Plant Physiol 108:29–38

    PubMed  CAS  Google Scholar 

  • Máthé-Gáspár G, Anton A (2005) Study of phytoremediation by use of willow and rape. Acta Biol Szeged 49:73–74

    Google Scholar 

  • Nriagu JO, Pacyna JM (1998) Quantitative assessment of worldwide contamination of air, water and soils with trace metals. Nature 333:134–139

    Article  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotech 8:221–226

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    PubMed  CAS  Google Scholar 

  • Schäfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthase isoform. Plant Mol Biol 37:87–97

    Article  PubMed  Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EA (2003) Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brasica juncea. Planta 218:71–78

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J Biol Chem 275:31451–31459

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv OL, Rea PA (2004) Phytochelatin synthase, a dipeptidyktransferase that undergoes multisite acylation with γ-glutamylcysteine during catalysis. J Biol Chem 279:22449–22460

    Article  PubMed  CAS  Google Scholar 

  • Zarcinas BA, Cartwright B, Spouncer LR (1987) Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. Commun Soil Sci Plant Anal 18:131–146

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plant—a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

  • Zhu YL, Pilon-Smiths EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smiths EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ(-glutamylcisteine synthetase. Plant Physiol 121:1169–1177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Norman Terry for supplying us with Indian mustard seed, including transgenic line GS7, and Dr. Peter Goldsbrough for helping us with PCs analyses. This work was funded by a grant received from the Illinois Department of Natural Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schuyler S. Korban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasic, K., Korban, S.S. Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225, 1277–1285 (2007). https://doi.org/10.1007/s00425-006-0421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0421-y

Keywords

Navigation