Skip to main content
Log in

Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Catharanthus roseus produces a wide range of secondary metabolites, some of which present high therapeutic values such as antitumoral monoterpenoid indole alkaloids (MIAs), vinblastine and vincristine, and the hypotensive MIA, ajmalicine. We have recently shown that a complex multicellular organisation of the MIA biosynthetic pathway occurred in C. roseus aerial organs. In particular, the final steps of both the secoiridoid–monoterpene and indole pathways specifically occurred in the epidermis of leaves and petals. Chorismate is the common precursor of indole and phenylpropanoid pathways. In an attempt to better map the spatio-temporal organisation of diverse secondary metabolisms in Catharanthus roseus aerial organs, we studied the expression pattern of genes encoding enzymes of the phenylpropanoid pathway (phenylalanine ammonia-lyase [PAL, E.C. 4.3.1.5], cinnamate 4-hydroxylase [C4H, E.C. 1.14.13.11] and chalcone synthase [CHS, E.C. 2.3.1.74]). In situ hybridisation experiments revealed that CrPAL and CrC4H were specifically localised to lignifying xylem, whereas CrPAL, CrC4H and CrCHS were specifically expressed in the flavonoid-rich upper epidermis. Interestingly, these three genes were co-expressed in the epidermis (at least the upper, adaxial one) together with three MIA-related genes, indicating that single epidermis cells were capable of concomitantly producing a wide range of diverse secondary metabolites (e.g. flavonoïds, indoles, secoiridoid–monoterpenes and MIAs). These results, and data showing co-accumulation of flavonoids and alkaloids in single cells of C. roseus cell lines, indicated the spatio-temporal feasibility of putative common regulation mechanisms for the expression of these genes involved in at least four distinct secondary metabolisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MIA(s):

Monoterpenoid indole alkaloid(s)

PAL:

Phenylalanine ammonia-lyase

C4H:

Cinnamate 4-hydroxylase

CHS:

Chalcone synthase

MEP:

2C-methyl-d-erythritol 4-phosphate

DXS:

1-deoxy-d-xylulose 5-phosphate (DXP) synthase

DXR:

DXP reductoisomerase

MECS:

2C-methyl-d-erythritol 2,4-cyclodiphosphate (MEC) synthase

G10H:

Geraniol 10-hydroxylase

SLS:

Secologanin synthase

TDC:

Tryptophan decarboxylase

STR:

Strictosidine synthase

D4H:

Desacetoxyvindoline 4-hydroxylase

DAT:

Deacetylvindoline 4-O-acetyltransferase

2,4-D:

2,4-dichlorophenoxyacetic acid

MM:

Maintenance medium

PM:

Production medium

FAA:

Formaldehyde acetic acid ethyl alcohol

2-APB:

2-aminoethyldiphenyl borinate

AP:

Alkaline phosphatase

BCIP:

5-Bromo-4-chloro-3-indolyl phosphate

NBT:

Nitro blue tetrazolium chloride

ORCA:

Octadecanoid-responsive Catharanthus AP2 transcription factor

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    Article  PubMed  CAS  Google Scholar 

  • Andi S, Taguchi F, Toyoda K, Shiraishi T, Ichinose Y (2001) Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol 42:446–449

    Article  PubMed  CAS  Google Scholar 

  • Arvy MP, Imbault N, Naudascher F, Thiersault M, Doireau P (1994) 2,4-d and alkaloid accumulation in periwinkle cell suspensions. Biochimie 76:410–416

    Article  PubMed  CAS  Google Scholar 

  • Bevan M, Shufflebottom D, Edwards K, Jefferson R, Schuch W (1989) Tissue- and cell-specific activity of a phenylalanine ammonia-lyase promoter in transgenic plants. EMBO J 8:1899–1906

    PubMed  CAS  Google Scholar 

  • Brown S, Renaudin JP, Prévot C, Guern J (1984) Flow cytometry and sorting of plant protoplasts: technical problems and physiological results from a study of pH and alkaloids in Catharanthus roseus. Physiol Vég 22:541–554

    CAS  Google Scholar 

  • Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10 hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38:131–141

    Article  PubMed  CAS  Google Scholar 

  • Cacace S, Schröder G, Wehinger E, Strack D, Schmidt J, Schröder J (2003) A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations. Phytochemistry 62:127–137

    Article  PubMed  CAS  Google Scholar 

  • Courdavault V, Thiersault M, Courtois M, Gantet P, Oudin A, Doireau P, St-Pierre B, Giglioli-Guivarc’h N (2005) CaaX-prenyltransferases are essential for expression of genes involved in the early stages of monoterpenoid biosynthetic pathway in Catharanthus roseus cells. Plant Mol Biol 57:855–870

    Article  PubMed  CAS  Google Scholar 

  • Czichi U, Kindl H (1977) Phenylalanine ammonia-lyase and cinnamic acid hydroxylase as assembled consecutive enzymes on microsomal membranes of cucumber cotyledons: cooperation and subcellular distribution. Planta 134:133–143

    Article  CAS  Google Scholar 

  • Deus B, Zenk MH (1982) Exploitation of plant cells for the production of natural compounds. Biotechnol Bioeng 24:1965–1974

    Article  CAS  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Gamborg OL, Miller RRA, Ojima K (1968) Nutriment requirements of suspension cultures of soybean root cells. Exp Cells Res 50:151–158

    Article  CAS  Google Scholar 

  • Gantet P, Memelink J (2002) Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol Sci 23:563–569

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–658

    Article  Google Scholar 

  • Hisiger S, Jolicoeur M (2005) Plant cell culture monitoring using an in situ multiwavelengh fluorescence probe. Biotechnol Prog 21:580–589

    Article  PubMed  CAS  Google Scholar 

  • Hotze M, Schröder G, Schröder J (1995) Cinnamate 4-hydroxylase from Catharanthus roseus, and a strategy for the functional expression of plant cytochrome P450 proteins as translational fusions with P450 reductase in Escherichia coli. FEBS Lett 374:345–350

    Article  PubMed  CAS  Google Scholar 

  • Hrazdina G, Jensen RA (1992) Spatial organization of enzymes in plant metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 43:241–267

    Article  CAS  Google Scholar 

  • Hutzler P, Fischbach R, Heller W, Jungblut TP, Reuber S, Schmitz R, Veit M, Weissenbock G, Schnitzler JP (1998) Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J Exp Bot 49:953–965

    Article  CAS  Google Scholar 

  • Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schröder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 6:797–804

    Article  Google Scholar 

  • Jackson D (1992) In situ hybridisation in plants. In: Gurr SJ, McPherson MJ, Bowles DJ (eds) Molecular plant pathology: a practical approach. IRL Press, Oxford, pp 163–174

    Google Scholar 

  • Kaltenbach M, Schröder G, Schmelzer E, Lutz V, Schröder J (1999) Flavonoid hydroxylase from Catharanthus roseus: cDNA, heterologous expression, enzyme properties and cell-type specific expression in plants. Plant J 19:183–193

    Article  PubMed  CAS  Google Scholar 

  • Kao YY, Harding SA, Tsai CJ (2002) Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol 130:796–807

    Article  PubMed  Google Scholar 

  • Kolb CA, Käser MA, Kopecký J, Zotz G, Riederer M, Pfündel EE (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 127:863–875

    Article  PubMed  CAS  Google Scholar 

  • Kutchan TM (2005) A role for intra- and intercellular translocation in natural product biosynthesis. Curr Opin Plant Biol 8:292–300

    Article  PubMed  CAS  Google Scholar 

  • Lee BK, Park MR, Srinivas B, Chun JC, Kwon IS, Chung IM, Yoo NH, Choi KG, Yun SJ (2003) Induction of phenylalanine ammonia-lyase gene expression by paraquat and stress-related hormones in Rehmannia glutinosa. Mol Cells 16:34–39

    PubMed  CAS  Google Scholar 

  • Levee V, Seguin A (2001) Inducible expression of the heterologous PAL2 promoter from bean in white pine (Pinus strobus) transgenic cells. Tree Physiol 21:665–672

    PubMed  CAS  Google Scholar 

  • Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    Article  PubMed  CAS  Google Scholar 

  • Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem (Tokyo) 122:498–505

    CAS  Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  PubMed  CAS  Google Scholar 

  • Mérillon JM, Ouelhazi L, Doireau P, Guillot A, Chenieux J-C, Rideau M (1986) Indole alkaloid accumulation and tryptophan decarboxylase activity in Catharanthus roseus cells cultured in three different media. Plant Cell Rep 5:23–26

    Article  Google Scholar 

  • Neumann D, Krauss G, Hieke M, Gröger D (1983) Indole alkaloid formation and storage in cell suspension cultures of Catharanthus roseus. Planta Med 48:20–23

    Article  PubMed  CAS  Google Scholar 

  • Osakabe Y, Nanto K, Kitamura H, Kawai S, Kondo Y, Fujii T, Takabe K, Katayama Y, Morohoshi N (1996) Immunocytochemical localization of phenylalanine ammonia-lyase in tissues of Populus kitakamiensis. Planta 200:13–19

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Brown DE, Tague BE, Muday GK, Taiz L, Murphy AS (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol 126:536–548

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen R, Dixon RA (1999) Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell 11:1537–1552

    Article  PubMed  CAS  Google Scholar 

  • Richard S, Lapointe G, Rutledge RG, Seguin A (2000) Induction of chalcone synthase expression in white spruce by wounding and jasmonate. Plant Cell Physiol 41:982–987

    Article  PubMed  CAS  Google Scholar 

  • Saslowsky D, Winkel-Shirley B (2001) Localization of flavonoid enzymes in Arabidopsis roots. Plant J 27:37–48

    Article  PubMed  CAS  Google Scholar 

  • Schröder G, Wehinger E, Lukacin R, Wellmann F, Seefelder W, Schwab W, Schröder J (2004) Flavonoid methylation: a novel 4’-O-methyltransferase from Catharanthus roseus, and evidence that partially methylated flavanones are substrates of four different flavonoid dioxygenases. Phytochemistry 65:1085–1094

    Article  PubMed  Google Scholar 

  • Schmelzer E, Kroeger-Lebus S, Hahlbrock K (1989) Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. Plant Cell 1:993–1001

    Article  PubMed  CAS  Google Scholar 

  • Schmid J, Doerner PW, Clouse SD, Dixon RA, Lamb CJ (1990) Developmental and environmental regulation of a bean chalcone synthase promoter in transgenic tobacco. Plant Cell 2:619–631

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler J-P, Jungblut TP, Heller W, Köfferlein M, Hutzler P, Heinzmann U, Schmelzer E, Ernst D, Langebartels C, Sandermann H Jr (1996) Tissue localization of UV-B-screening pigments and of chalcone synthase mRNA in needles of scots pine seedlings. New Phytol 132:247–258

    Article  CAS  Google Scholar 

  • St-Pierre B, Vazquez-Flota FA, DeLuca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam R, Reinold S, Molitor EK, Douglas CJ (1993) Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa × Populus deltoides) phenylalanine ammonia-lyase genes. Plant Physiol 102:71–83

    Article  PubMed  CAS  Google Scholar 

  • Ye ZH (1996) Expression patterns of the cinnamic acid 4-hydroxylase gene during lignification in Zinnia elegans. Plant Sci 121:133–141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministère de l’Education Nationale, de la Recherche et de la Technologie (MENRT, France) and by the Ligue Nationale contre le Cancer (comité d’indre and comité d’indre et loire). S. M. was financed by a “bourse de cooperation franco-algérienne”. We thank Dr. Kiyota (National Institute of Agrobiological Sciences, Tsukuba Ibaraki, Japan) for the gift of C. roseus PAL cDNA and Prof. J. Schröder (University of Freiburg, Germany) who kindly provided C. roseus C4H and CHS cDNAs. We also thank Dr. Facchini (University of Calgary, Canada) for careful revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Burlat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahroug, S., Courdavault, V., Thiersault, M. et al. Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs. Planta 223, 1191–1200 (2006). https://doi.org/10.1007/s00425-005-0167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0167-y

Keywords

Navigation