Skip to main content
Log in

Identification of a new gene controlling plant height in rice using the candidate-gene strategy

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A gene underlying a quantitative trait locus (QTL) controlling plant height on chromosome 1 (QTLph1) in rice (Oryza sativa L.) was identified using the candidate-gene strategy. First, the function of a targeted gene was analyzed using near isogenic lines (NILs) in which the chromosomal region of a targeted QTL was substituted with that of another line. Second, for physiological information, the candidate gene was selected in the annotation data by the genome sequencing. Physiological analyses of an NIL-expressing QTLph1 (NIL6) suggested that the targeted gene controls plant height by enabling higher amounts of sucrose to be translocated in leaves. The results indicated that the gene for sucrose phosphate synthase (SPS; EC 2.4.1.14), the major limiting enzyme for sucrose synthesis, is a candidate gene for QTLph1 among the annotation results of the region of QTLph1. The higher level of SPS transcripts and the activity of SPS in NIL6 compared to control plants, and the fact that the relative SPS activity per SPS protein content was almost the same between NIL6 and Nipponbare suggested that the higher plant height in NIL6 compared to Nipponbare was due to the high SPS activity in NIL6. In agreement with this hypothesis, transgenic rice plants with a maize SPS gene that had about 3 times the SPS activity of that in Nipponbare (control plants) were significantly taller than Nipponbare from the early growth stage. From these results and the physiological data from NIL6, we concluded that SPS is the targeted gene underlying QTLph1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3a–d
Fig. 4a, b

Similar content being viewed by others

Abbreviations

cFBPase:

cytosolic fructose-1,6-bisphosphate

LOD:

likelihood odds ratio

NIL:

near isogenic line

QTL:

quantitative trait locus

QTLph1:

quantitative trait locus controlling plant height on chromosome 1

RGA1:

heterotrimeric G protein

SPS:

sucrose phosphate synthase

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402

    PubMed  Google Scholar 

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96:10284–10289

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HU, Bert E (1974) Methods for determination of metabolites: Carbohydrate metabolism: sucrose. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1176–1179

  • de Vries P (1989) Assimilation and dissimilation of carbon. In: Baños L (ed) Simulation of ecophysiological processes of growth in several annual crops. IRRI, Manila, Philippines, pp 27–72

  • Federspiel N (2000) Deciphering a weed. Genomic sequencing of Arabidopsis. Plant Physiol 124:1456–1459

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Galtier N (1996) Source-sink interaction and communication in leaves. In: Zmaski E, Schafter AA (eds) Photoassimilate distribution in plants and crops: source–sink relations. Dekker, New York, pp 311–340

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD Jr (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845

    CAS  PubMed  Google Scholar 

  • Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y (1999) Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci USA 96:7575–7580

    Article  CAS  PubMed  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    CAS  PubMed  Google Scholar 

  • Galtier N, Foyer CH, Huber J, Voelker TA, Huber SC (1993) Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning and growth in tomato (Lycopersicon esculentum var UC82B). Plant Physiol 101:535–543

    CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  Google Scholar 

  • Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning and yield. Annu Rev Plant Physiol 32:485–509

    CAS  Google Scholar 

  • Hirochika H (1997) Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol 35:231–240

    Article  CAS  PubMed  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444

    Google Scholar 

  • Ishimaru K, Yano M, Aoki N, Ono K, Hirose T, Lin SY, Monna L, Sasaki T, Ohsugi R (2001a) Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Genet 102:792–800

    Article  Google Scholar 

  • Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R (2001b) Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? J Exp Bot 52:1827–1833

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K, Shirota K, Higa M, Kawamitsu Y (2001c) Identification of quantitative trait loci for adaxial and abaxial stomatal frequencies in Oryza sativa. Plant Physiol Biochem 39:173–177

    Article  CAS  Google Scholar 

  • Kende H, van der Knaap E, Cho HT (1998) Deepwater rice: a model plant to study stem elongation. Plant Physiol 118:1105–1110

    Article  CAS  PubMed  Google Scholar 

  • Lincoln S, Daly M, Lander E (1993) Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1: a tutorial and reference manual, 2nd edn. Whitehead Institute Technical Report, Cambridge, UK

  • Lunn JE, Hatch MD (1997) The role of sucrose-phosphate synthase in the control of photosynthate partitioning in Zea mays leaves. Aust J Plant Physiol 24:1–8

    CAS  Google Scholar 

  • Mann CC (1999) Crop sciences seek a new revolution. Science 283:310–314

    Article  CAS  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes mutant enzyme involved in gibberellin synthesis. DNA Res. 9:11–7

    Google Scholar 

  • Niklas KJ, Enquist BJ (2000) Invariant scaling relationships for interspecific plant biomass production rates and body size. Proc Natl Acad Sci USA 98:2922–2927

    Article  Google Scholar 

  • Ono K, Ishimaru K, Aoki N, Takahashi S, Ozawa K, Ohkawa Y, Ohsugi R (1999) Characterization of a maize sucrose-phosphate synthase protein and its effect on carbon partitioning in transgenic rice plant. Plant Prod Sci 2:172–177

    Google Scholar 

  • Prioul J, Pelleschi S, Sene M, Theevenot C, Causse M, de Vienne D, Leonardi A (1999) From QTLs for enzyme activity to candidate genes in maize. J Exp Bot 50: 1281–1288

    CAS  Google Scholar 

  • Sari-Gorla M, Krajewski P, Di Fonzo N, Villa M, Frova C (1999) Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor Appl Genet 99:289–295

    Article  Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K et al. (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J 18:992–1002

    Article  CAS  PubMed  Google Scholar 

  • Scott DB, Jin W, Ledford HK, Jung HS, Honma MA (1999) EAF1 regulates vegetative-phase change and flowering time in Arabidopsis. Plant Physiol 120:675–684

    Article  CAS  PubMed  Google Scholar 

  • Signora L, Galtier N, Skot L, Lucas H, Foyer CH (1998) Over-expression of sucrose synthase in Arabidopsis thaliana results in increased foliar sucrose/starch ratios and favours decreased foliar carbohydrate accumulation in plants after prolonged growth with CO2 enrichment. J Exp Bot 49:669–680

    Article  CAS  Google Scholar 

  • Sussman MR, Amasino RM, Young JC, Krysan PJ, Austin-Phillips S (2000) The Arabidopsis knockout facility at the university of Wisconsin-Madison. Plant Physiol 124:1465–1467

    PubMed  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    CAS  PubMed  Google Scholar 

  • Wadsworth GJ. Redinbaugh MG, Scandalios JG (1988) A procedure for the small-scale isolation of plant RNA suitable for RNA blot analysis. Anal Biochem 172:279–283

    CAS  PubMed  Google Scholar 

  • Wilson WA, Harrington SE, Woodman WL, Lee M, Sorrells ME, McCouch SR (1999) Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 153:453–473

    CAS  PubMed  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92:230–244

    Article  CAS  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Lin H, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154:885–891

    Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA 99:7530–7535

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35:145–153

    CAS  PubMed  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Google Scholar 

  • Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL (1997) Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet 95:799–808

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Masahiro Yano for providing NIL seeds, and Prof. Mirella Sari-Gorla and Drs. Enrico Pe, Luca Gianfranceschi, Lisa Monna, Kazuhiko Kobayashi and Haruto Sasaki for their kind suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Ishimaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishimaru, K., Ono, K. & Kashiwagi, T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta 218, 388–395 (2004). https://doi.org/10.1007/s00425-003-1119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1119-z

Keywords

Navigation