Skip to main content
Log in

Latest perspectives on macrophages in bone homeostasis

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Knowledge about macrophages residing in the bone, also known as osteal macrophages or osteomacs, is still limited. A hallmark of this peculiar myeloid population is the expression of macrophage markers distinct from the markers found on osteoclast surface. In bone, osteomacs are in contact with osteoblasts, where they are involved in regulating bone homeostasis. However, additional macrophage subtypes already present in the bone marrow or recruited from the blood circulation could have further functions, which could be all important for the maintenance of the bone architecture and its associated functions. Indeed, bone marrow macrophages have been found to eliminate apoptotic cells, particularly apoptotic osteoblasts through a process named efferocytosis. This phagocytic process plays an essential role in bone tissue homeostasis and new bone formation. In addition, bone marrow macrophages can influence the hematopoietic stem cell (HSC) niches. They contribute to the regulation of the HSC progenitor cell maintenance, mobilization, and function. To do so, macrophages secrete cytokines in steady state or during stress conditions. These cytokines influence hematopoiesis either by a direct effect on HSCs or through the control of stromal cells that are essential for the HSC niches. Interestingly, the similarities between the niches for HSCs and the niche for metastatic tumor cells support the possibility that bone-resident macrophages could control the homing of tumor cells and their proliferation within the bone. In general, macrophage role during metastatic processes is well described; however, their direct involvement in bone metastasis is a rising research area. In this review, we will highlight the macrophage functions in the skeleton, in the maintenance of the HCS niches, and their importance in bone metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, Jaiyeola C, Zhao Z, Luby-Phelps K, Morrison SJ (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526:126–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alexander KA, Raggatt L-J, Millard S, Batoon L, Chiu-Ku Wu A, Chang M-K, Hume DA, Pettit AR (2017) Resting and injury-induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration. Immunol Cell Biol 95:7–16

    Article  CAS  PubMed  Google Scholar 

  3. Aslan D, Andersen MD, Gede LB, de Franca TK, Jørgensen SR, Schwarz P, Jørgensen NR (2012) Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans. Scand J Clin Lab Invest 72:14–22

    Article  CAS  PubMed  Google Scholar 

  4. Biswas SK, Mantovani A (2012) Orchestration of metabolism by macrophages. Cell Metab 15:432–437

    Article  CAS  PubMed  Google Scholar 

  5. Boettcher S, Gerosa RC, Radpour R, Bauer J, Ampenberger F, Heikenwalder M, Kopf M, Manz MG (2014) Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124:1393–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bozec A, Bakiri L, Hoebertz A, Eferl R, Schilling AF, Komnenovic V, Scheuch H, Priemel M, Stewart CL, Amling M, Wagner EF (2008) Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia. Nature 454:221–225

    Article  CAS  PubMed  Google Scholar 

  7. Bozec A, Bakiri L, Jimenez M, Schinke T, Amling M, Wagner EF (2010) Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production. J Cell Biol 190:1093–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Champagne CM, Takebe J, Offenbacher S, Cooper LF (2002) Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30:26–31

    Article  CAS  PubMed  Google Scholar 

  9. Chang MK, Raggatt L-J, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181:1232–1244

    Article  CAS  PubMed  Google Scholar 

  10. Charo IF, Taubman MB (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95:858–866

    Article  CAS  PubMed  Google Scholar 

  11. Cho SW, Soki FN, Koh AJ, Eber MR, Entezami P, Park SI, van Rooijen N, McCauley LK (2014) Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc Natl Acad Sci U S A 111:1545–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van Rooijen N, Tanaka M, Merad M, Frenette PS (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208:261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243s–6249s

    Article  PubMed  Google Scholar 

  14. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  CAS  PubMed  Google Scholar 

  15. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14:986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davies LC, Taylor PR (2015) Tissue-resident macrophages: then and now. Immunology 144:541–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Felix R, Cecchini MG, Fleisch H (1990) Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse. Endocrinology 127:2592–2594

    Article  CAS  PubMed  Google Scholar 

  19. Fernandes TJ, Hodge JM, Singh PP, Eeles DG, Collier FM, Holten I, Ebeling PR, Nicholson GC, Quinn JMW (2013) Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner. PLoS One 8:e73266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grassinger J, Haylock DN, Williams B, Olsen GH, Nilsson SK (2010) Phenotypically identical hemopoietic stem cells isolated from different regions of bone marrow have different biologic potential. Blood 116:3185–3196

    Article  CAS  PubMed  Google Scholar 

  21. Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. doi:10.1038/nature11926

    PubMed  PubMed Central  Google Scholar 

  22. Groom JR, Luster AD (2011) CXCR3 in T cell function. Exp Cell Res 317:620–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guihard P, Boutet M-A, Brounais-Le Royer B, Gamblin A-L, Amiaud J, Renaud A, Berreur M, Rédini F, Heymann D, Layrolle P, Blanchard F (2015) Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol 185:765–775

    Article  CAS  PubMed  Google Scholar 

  24. Guihard P, Danger Y, Brounais B, David E, Brion R, Delecrin J, Richards CD, Chevalier S, Rédini F, Heymann D, Gascan H, Blanchard F (2012) Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 30:762–772

    Article  CAS  PubMed  Google Scholar 

  25. Hiraoka K, Zenmyo M, Watari K, Iguchi H, Fotovati A, Kimura YN, Hosoi F, Shoda T, Nagata K, Osada H, Ono M, Kuwano M (2008) Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages. Cancer Sci 99:1595–1602

    Article  CAS  PubMed  Google Scholar 

  26. Hume DA, MacDonald KPA (2012) Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119:1810–1820

    Article  CAS  PubMed  Google Scholar 

  27. Hur J, Choi J-I, Lee H, Nham P, Kim T-W, Chae C-W, Yun J-Y, Kang J-A, Kang J, Lee SE, Yoon C-H, Boo K, Ham S, Roh T-Y, Jun JK, Lee H, Baek SH, Kim H-S (2016) CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell 18:508–521

    Article  CAS  PubMed  Google Scholar 

  28. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328

    Article  CAS  PubMed  Google Scholar 

  29. Koh AJ, Novince CM, Li X, Wang T, Taichman RS, McCauley LK (2011) An irradiation-altered bone marrow microenvironment impacts anabolic actions of PTH. Endocrinology 152:4525–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee J-H, Kim H-N, Kim K-O, Jin WJ, Lee S, Kim H-H, Ha H, Lee ZH (2012) CXCL10 promotes osteolytic bone metastasis by enhancing cancer outgrowth and osteoclastogenesis. Cancer Res 72:3175–3186

    Article  CAS  PubMed  Google Scholar 

  32. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  CAS  PubMed  Google Scholar 

  33. Li J-Y, Walker LD, Tyagi AM, Adams J, Weitzmann MN, Pacifici R (2014) The sclerostin-independent bone anabolic activity of intermittent PTH treatment is mediated by T-cell-produced Wnt10b. J Bone Miner Res 29:43–54

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lloyd SA, Yuan YY, Simske SJ, Riffle SE, Ferguson VL, Bateman TA (2009) Administration of high-dose macrophage colony-stimulating factor increases bone turnover and trabecular volume fraction. J Bone Miner Metab 27:546–554

    Article  CAS  PubMed  Google Scholar 

  35. Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, Wojno K, Snyder LA, Yan L, Pienta KJ (2007) Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res 67:9417–9424

    Article  CAS  PubMed  Google Scholar 

  36. Lu X-J, Chen Q, Rong Y-J, Yang G-J, Li C-H, Xu N-Y, Yu C-H, Wang H-Y, Zhang S, Shi Y-H, Chen J (2016) LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun 7:12719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu Y, Chen Q, Corey E, Xie W, Fan J, Mizokami A, Zhang J (2009) Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clin Exp Metastasis 26:161–169

    Article  PubMed  Google Scholar 

  38. Mandal CC, Das F, Ganapathy S, Harris SE, Choudhury GG, Ghosh-Choudhury N (2016) Bone morphogenetic protein-2 (BMP-2) activates NFATc1 transcription factor via an autoregulatory loop involving Smad/Akt/Ca2+ signaling. J Biol Chem 291:1148–1161

    Article  CAS  PubMed  Google Scholar 

  39. Martin TJ, Seeman E (2007) New mechanisms and targets in the treatment of bone fragility. Clin Sci 112:77

    Article  CAS  PubMed  Google Scholar 

  40. McCabe A, MacNamara KC (2016) Macrophages: key regulators of steady-state and demand-adapted hematopoiesis. Exp Hematol 44:213–222

    Article  CAS  PubMed  Google Scholar 

  41. McCauley LK, Dalli J, Koh AJ, Chiang N, Serhan CN (2014) Cutting edge: parathyroid hormone facilitates macrophage efferocytosis in bone marrow via proresolving mediators resolvin D1 and resolvin D2. J Immunol. doi:10.4049/jimmunol.1301945

    PubMed  PubMed Central  Google Scholar 

  42. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege J-L, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234

    Article  CAS  PubMed  Google Scholar 

  44. Nicolaidou V, Wong MM, Redpath AN, Ersek A, Baban DF, Williams LM, Cope AP, Horwood NJ (2012) Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One 7:e39871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pape H-C, Marcucio R, Humphrey C, Colnot C, Knobe M, Harvey EJ (2010) Trauma-induced inflammation and fracture healing. J Orthop Trauma 24:522–525

    Article  PubMed  Google Scholar 

  46. Pettit AR, Ji H, Stechow von D, Müller R, Goldring SR, Choi Y, Benoist C, Gravallese EM (2001) TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 159:1689–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raggatt LJ, Wullschleger ME, Alexander KA, Wu ACK, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R, Pettit AR (2014) Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol 184:3192–3204

    Article  CAS  PubMed  Google Scholar 

  48. Rawadi G, Vayssière B, Dunn F, Baron R, Roman-Roman S (2003) BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 18:1842–1853

    Article  CAS  PubMed  Google Scholar 

  49. Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ (2009) CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284:34342–34354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sims NA, Quinn JMW (2014) Osteoimmunology: oncostatin M as a pleiotropic regulator of bone formation and resorption in health and disease. Bonekey Rep 3:527

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sinder BP, Pettit AR, McCauley LK (2015) Macrophages: their emerging roles in bone. J Bone Miner Res 30:2140–2149

    Article  PubMed  PubMed Central  Google Scholar 

  52. Soejima K, Rollins BJ (2001) A functional IFN-gamma-inducible protein-10/CXCL10-specific receptor expressed by epithelial and endothelial cells that is neither CXCR3 nor glycosaminoglycan. J Immunol 167:6576–6582

    Article  CAS  PubMed  Google Scholar 

  53. Sousa S, Määttä J (2016) The role of tumour-associated macrophages in bone metastasis. J Bone Oncol 5:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tanaka Y, Nakayamada S, Okada Y (2005) Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr Drug Targets Inflamm Allergy 4:325–328

    Article  CAS  PubMed  Google Scholar 

  55. Terauchi M, Li J-Y, Bedi B, Baek K-H, Tawfeek H, Galley S, Gilbert L, Nanes MS, Zayzafoon M, Guldberg R, Lamar DL, Singer MA, Lane TF, Kronenberg HM, Weitzmann MN, Pacifici R (2009) T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab 10:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van Rooijen N, Hendrikx E (2010) Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol 605:189–203

    Article  PubMed  Google Scholar 

  57. Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Grynpas M, Alman BA (2015) Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res 30:1090–1102

    Article  CAS  PubMed  Google Scholar 

  58. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lió P, Macdonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135:1118–1129

    Article  CAS  PubMed  Google Scholar 

  59. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, Lévesque J-P (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116:4815–4828

    Article  CAS  PubMed  Google Scholar 

  60. Wu AC, Raggatt LJ, Alexander KA, Pettit AR (2013) Unraveling macrophage contributions to bone repair. Bonekey Rep 2:373

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wu M, Chen G, Li Y-P (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457:97–101

    Article  CAS  PubMed  Google Scholar 

  64. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang Q, Miller C, Bible J, Li J, Xu X, Mehta N, Gilligan J, Vignery A, Scholz JAC (2012) Additive effects of mechanical marrow ablation and PTH treatment on de novo bone formation in mature adult rats. Cells 1:1168–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zoller EE, Lykens JE, Terrell CE, Aliberti J, Filipovich AH, Henson PM, Jordan MB (2011) Hemophagocytosis causes a consumptive anemia of inflammation. J Exp Med 208:1203–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft (CRC1181-A01, SPP1468, IMMUNOBONE; BO3811/1-1, Emmy Noether to A.B.; grant SO 1149/1-1 to D.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Bozec.

Additional information

This article is part of the special issue on macrophages in tissue homeostasis in Pflügers Archiv – European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozec, A., Soulat, D. Latest perspectives on macrophages in bone homeostasis. Pflugers Arch - Eur J Physiol 469, 517–525 (2017). https://doi.org/10.1007/s00424-017-1952-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-1952-8

Keywords

Navigation