Skip to main content

Advertisement

Log in

Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Intestinal inflammatory diseases, four of which are discussed here, are associated with alterations of claudins. In ulcerative colitis, diarrhea and antigen entry into the mucosa occurs. Claudin-2 is upregulated but data on other claudins are still limited or vary (e.g., claudin-1 and -4). Apart from that, tight junction changes contribute to diarrhea via a leak flux mechanism, while protection against antigen entry disappears behind epithelial gross lesions (erosions) and apoptotic foci. Crohn’s disease is additionally characterized by a claudin-5 and claudin-8 reduction which plays an active role in antigen uptake already before gross lesions appear. In microscopic colitis (MC), upregulation of claudin-2 expression is weak and a reduction in claudin-4 may be only passively involved, while sodium malabsorption represents the main diarrheal mechanism. However, claudin-5 is removed from MC tight junctions which may be an active trigger for inflammation through antigen uptake along the so-called leaky gut concept. In celiac disease, primary barrier defects are discussed in the context of candidate genes as PARD3 which regulate cell polarity and tight junctions. The loss of claudin-5 allows small antigens to invade, while the reductions in others like claudin-3 are rather passive events. Taken together, the specific role of single tight junction proteins for the onset and perpetuation of inflammation and the recovery from these diseases is far from being fully understood and is clearly dependent on the stage of the disease, the background of the other tight junction components, the transport activity of the mucosa, and the presence of other barrier features like gross lesions, an orchestral interplay which is discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmad R, Chaturvedi R, Olivares-Villagomez D, Habib T, Asim M, Shivesh P, Polk DB, Wilson KT, Washington MK, Van Kaer L, Dhawan P, Singh AB (2014) Targeted colonic claudin-2 expression renders resistance to epithelial injury, induces immune suppression, and protects from colitis. Mucosal immunology 7:1340–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Al-Sadi R, Khatib K, Guo S, Ye D, Youssef M, Ma T (2011) Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American journal of physiology Gastrointestinal and liver physiology 300:G1054–G1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amasheh M, Fromm A, Krug SM, Amasheh S, Andres S, Zeitz M, Fromm M, Schulzke JD (2010) TNFalpha-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFkappaB signaling. J Cell Sci 123:4145–4155

    Article  CAS  PubMed  Google Scholar 

  4. Amasheh S, Meiri N, Gitter AH, Schoneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976

    Article  CAS  PubMed  Google Scholar 

  5. Amasheh S, Milatz S, Krug SM, Bergs M, Amasheh M, Schulzke JD, Fromm M (2009) Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochem Biophys Res Commun 378:45–50

    Article  CAS  PubMed  Google Scholar 

  6. Amasheh S, Schmidt T, Mahn M, Florian P, Mankertz J, Tavalali S, Gitter AH, Schulzke JD, Fromm M (2005) Contribution of claudin-5 to barrier properties in tight junctions of epithelial cells. Cell Tissue Res 321:89–96

    Article  CAS  PubMed  Google Scholar 

  7. Bagnat M, Cheung ID, Mostov KE, Stainier DY (2007) Genetic control of single lumen formation in the zebrafish gut. Nat Cell Biol 9:954–960

    Article  CAS  PubMed  Google Scholar 

  8. Barmeyer C, Erko I, Fromm A, Bojarski C, Allers K, Moos V, Zeitz M, Fromm M, Schulzke JD (2012) Ion transport and barrier function are disturbed in microscopic colitis. Ann N Y Acad Sci 1258:143–148

    Article  CAS  PubMed  Google Scholar 

  9. Barmeyer C, Erko I, Fromm A, Bojarski C, Loddenkemper C, Dames P, Kerick M, Siegmund B, Fromm M, Schweiger MR, Schulzke JD (2016) ENaC dysregulation through activation of MEK1/2 contributes to impaired Na+ absorption in lymphocytic colitis. Inflamm Bowel Dis 22:539–547

    Article  PubMed  Google Scholar 

  10. Barmeyer C, Schulzke JD, Fromm M (2015) Claudin-related intestinal diseases. Semin Cell Dev Biol 42:30–38

    Article  CAS  PubMed  Google Scholar 

  11. Barmeyer C, Troeger H, Bojarski C, Siegmund B, Fromm M, Schulzke JD (2014) Lymphocytic colitis-related diarrhea is caused by both, ERK1/2-dependent inhibition of the epithelial sodium channel (ENaC) and a claudin-induced barrier defect. Gastroenterology 146:S-475

    Article  Google Scholar 

  12. Bertiaux-Vandaele N, Youmba SB, Belmonte L, Lecleire S, Antonietti M, Gourcerol G, Leroi AM, Dechelotte P, Menard JF, Ducrotte P, Coeffier M (2011) The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol 106:2165–2173

    Article  CAS  PubMed  Google Scholar 

  13. Bodd M, Raki M, Tollefsen S, Fallang LE, Bergseng E, Lundin KE, Sollid LM (2010) HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal immunology 3:594–601

    Article  CAS  PubMed  Google Scholar 

  14. Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171:6164–6172

    Article  CAS  PubMed  Google Scholar 

  15. Burgel N, Bojarski C, Mankertz J, Zeitz M, Fromm M, Schulzke JD (2002) Mechanisms of diarrhea in collagenous colitis. Gastroenterology 123:433–443

    Article  PubMed  Google Scholar 

  16. Buschmann MM, Shen L, Rajapakse H, Raleigh DR, Wang Y, Wang Y, Lingaraju A, Zha J, Abbott E, McAuley EM, Breskin LA, Wu L, Anderson K, Turner JR, Weber CR (2013) Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol Biol Cell 24:3056–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caruso R, Marafini I, Sedda S, Del Vecchio BG, Giuffrida P, MacDonald TT, Corazza GR, Pallone F, Di Sabatino A, Monteleone G (2014) Analysis of the cytokine profile in the duodenal mucosa of refractory coeliac disease patients. Clin Sci 126:451–458

    Article  CAS  PubMed  Google Scholar 

  18. Coyne CB, Gambling TM, Boucher RC, Carson JL, Johnson LG (2003) Role of claudin interactions in airway tight junctional permeability. American journal of physiology Lung cellular and molecular physiology 285:L1166–L1178

    Article  CAS  PubMed  Google Scholar 

  19. De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Novak N, Weidinger S, Beaty TH, Leung DY, Barnes KC, Beck LA (2011) Tight junction defects in patients with atopic dermatitis. The Journal of allergy and clinical immunology 127:773-786–e771-777

    Google Scholar 

  20. Del Vecchio G, Tscheik C, Tenz K, Helms HC, Winkler L, Blasig R, Blasig IE (2012) Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells. Mol Pharm 9:2523–2533

    Article  CAS  PubMed  Google Scholar 

  21. Devriese S, Eeckhaut V, Geirnaert A, Van den Bossche L, Hindryckx P, Van de Wiele T, Van Immerseel F, Ducatelle R, De Vos M, and Laukens D (2016). Reduced mucosa-associated Butyricicoccus activity in patients with ulcerative colitis correlates with aberrant claudin-1 expression. J Crohns Colitis. doi:10.1093/ecco-jcc/jjw142

  22. Dong CX, Zhao W, Solomon C, Rowland KJ, Ackerley C, Robine S, Holzenberger M, Gonska T, Brubaker PL (2014) The intestinal epithelial insulin-like growth factor-1 receptor links glucagon-like peptide-2 action to gut barrier function. Endocrinology 155:370–379

    Article  PubMed  CAS  Google Scholar 

  23. Edelblum KL, Turner JR (2009) The tight junction in inflammatory disease: communication breakdown. Curr Opin Pharmacol 9:715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Epple HJ, Schneider T, Troeger H, Kunkel D, Allers K, Moos V, Amasheh M, Loddenkemper C, Fromm M, Zeitz M, Schulzke JD (2009) Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients. Gut 58:220–227

    Article  CAS  PubMed  Google Scholar 

  25. Fischer A, Gluth M, Pape UF, Wiedenmann B, Theuring F, Baumgart DC (2013) Adalimumab prevents barrier dysfunction and antagonizes distinct effects of TNF-alpha on tight junction proteins and signaling pathways in intestinal epithelial cells. American journal of physiology Gastrointestinal and liver physiology 304:G970–G979

    Article  CAS  PubMed  Google Scholar 

  26. Fischer A, Gluth M, Weege F, Pape UF, Wiedenmann B, Baumgart DC, Theuring F (2014) Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells via MKP-1. American journal of physiology Gastrointestinal and liver physiology 306:G218–G228

    Article  CAS  PubMed  Google Scholar 

  27. Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T, Sawada N (2006) Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 54:933–944

    Article  CAS  Google Scholar 

  28. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goswami P, Das P, Verma AK, Prakash S, Das TK, Nag TC, Ahuja V, Gupta SD, Makharia GK (2014) Are alterations of tight junctions at molecular and ultrastructural level different in duodenal biopsies of patients with celiac disease and Crohn’s disease? Virchows Archiv : an international journal of pathology 465:521–530

    Article  CAS  Google Scholar 

  32. Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. The Journal of allergy and clinical immunology 124:3–20 quiz 21-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grosse B, Cassio D, Yousef N, Bernardo C, Jacquemin E, Gonzales E (2012) Claudin-1 involved in neonatal ichthyosis sclerosing cholangitis syndrome regulates hepatic paracellular permeability. Hepatology 55:1249–1259

    Article  CAS  PubMed  Google Scholar 

  34. Gunzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, Fabre M, Lyonnet S, De Prost Y, Munnich A, Hadchouel M, Smahi A (2004) Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology 127:1386–1390

    Article  CAS  PubMed  Google Scholar 

  36. Hashimoto K, Oshima T, Tomita T, Kim Y, Matsumoto T, Joh T, Miwa H (2008) Oxidative stress induces gastric epithelial permeability through claudin-3. Biochem Biophys Res Commun 376:154–157

    Article  CAS  PubMed  Google Scholar 

  37. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, Mankertz J, Gitter AH, Burgel N, Fromm M, Zeitz M, Fuss I, Strober W, Schulzke JD (2005) Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129:550–564

    Article  CAS  PubMed  Google Scholar 

  38. Hering NA, Andres S, Fromm A, van Tol EA, Amasheh M, Mankertz J, Fromm M, Schulzke JD (2011) Transforming growth factor-beta, a whey protein component, strengthens the intestinal barrier by upregulating claudin-4 in HT-29/B6 cells. J Nutr 141:783–789

    Article  CAS  PubMed  Google Scholar 

  39. Hering NA, Schulzke JD (2009) Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig Dis 27:450–454

    Article  PubMed  Google Scholar 

  40. Hou J, Gomes AS, Paul DL, Goodenough DA (2006) Study of claudin function by RNA interference. J Biol Chem 281:36117–36123

    Article  CAS  PubMed  Google Scholar 

  41. Hou J, Renigunta A, Yang J, Waldegger S (2010) Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci U S A 107:18010–18015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Inai T, Kobayashi J, Shibata Y (1999) Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur J Cell Biol 78:849–855

    Article  CAS  PubMed  Google Scholar 

  44. Ishizaki T, Chiba H, Kojima T, Fujibe M, Soma T, Miyajima H, Nagasawa K, Wada I, Sawada N (2003) Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood-brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways. Exp Cell Res 290:275–288

    Article  CAS  PubMed  Google Scholar 

  45. Jia W, Lu R, Martin TA, Jiang WG (2014) The role of claudin-5 in blood-brain barrier (BBB) and brain metastases (review). Mol Med Rep 9:779–785

    CAS  PubMed  Google Scholar 

  46. Karaki S, Kaji I, Otomo Y, Tazoe H, Kuwahara A (2007) The tight junction component protein, claudin-4, is expressed by enteric neurons in the rat distal colon. Neurosci Lett 428:88–92

    Article  CAS  PubMed  Google Scholar 

  47. Kinugasa T, Akagi Y, Yoshida T, Ryu Y, Shiratuchi I, Ishibashi N, Shirouzu K (2010) Increased claudin-1 protein expression contributes to tumorigenesis in ulcerative colitis-associated colorectal cancer. Anticancer Res 30:3181–3186

    PubMed  Google Scholar 

  48. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. Journal of the American Society of Nephrology : JASN 13:875–886

    CAS  PubMed  Google Scholar 

  49. Kong WM, Gong J, Dong L, Xu JR (2007) Changes of tight junction claudin-1,-3,-4 protein expression in the intestinal mucosa in patients with irritable bowel syndrome. Nan fang yi ke da xue xue bao = Journal of Southern Medical University 27:1345–1347

    CAS  PubMed  Google Scholar 

  50. Krug SM, Schulzke JD, Fromm M (2014) Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol 36:166–176

    Article  CAS  PubMed  Google Scholar 

  51. Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A (2001) Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol 159:2001–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li WY, Huey CL, Yu AS (2004) Expression of claudin-7 and -8 along the mouse nephron. American journal of physiology Renal physiology 286:F1063–F1071

    Article  CAS  PubMed  Google Scholar 

  53. Liu LB, Xue YX, Liu YH, Wang YB (2008) Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res 86:1153–1168

    Article  CAS  PubMed  Google Scholar 

  54. Matysiak-Budnik T, Candalh C, Dugave C, Namane A, Cellier C, Cerf-Bensussan N, Heyman M (2003) Alterations of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterology 125:696–707

    Article  CAS  PubMed  Google Scholar 

  55. McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Skare IB, Lynch RD, Schneeberger EE (2000) Inducible expression of claudin-1-myc but not occludin-VSV-G results in aberrant tight junction strand formation in MDCK cells. J Cell Sci 113(Pt 19):3387–3398

    CAS  PubMed  Google Scholar 

  56. McLaughlin J, Padfield PJ, Burt JP, O’Neill CA (2004) Ochratoxin A increases permeability through tight junctions by removal of specific claudin isoforms. American journal of physiology Cell physiology 287:C1412–C1417

    Article  CAS  PubMed  Google Scholar 

  57. Mees ST, Mennigen R, Spieker T, Rijcken E, Senninger N, Haier J, Bruewer M (2009) Expression of tight and adherens junction proteins in ulcerative colitis associated colorectal carcinoma: upregulation of claudin-1, claudin-3, claudin-4, and beta-catenin. Int J Color Dis 24:361–368

    Article  CAS  Google Scholar 

  58. Menard S, Lebreton C, Schumann M, Matysiak-Budnik T, Dugave C, Bouhnik Y, Malamut G, Cellier C, Allez M, Crenn P, Schulzke JD, Cerf-Bensussan N, Heyman M (2012) Paracellular versus transcellular intestinal permeability to gliadin peptides in active celiac disease. Am J Pathol 180:608–615

    Article  CAS  PubMed  Google Scholar 

  59. Michikawa H, Fujita-Yoshigaki J, Sugiya H (2008) Enhancement of barrier function by overexpression of claudin-4 in tight junctions of submandibular gland cells. Cell Tissue Res 334:255–264

    Article  CAS  PubMed  Google Scholar 

  60. Milatz S, Krug SM, Rosenthal R, Gunzel D, Muller D, Schulzke JD, Amasheh S, Fromm M (2010) Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta 1798:2048–2057

    Article  CAS  PubMed  Google Scholar 

  61. Mishra A, Prakash S, Sreenivas V, Das TK, Ahuja V, Gupta SD, Makharia GK (2016) Structural and functional changes in the tight junctions of asymptomatic and serology-negative first-degree relatives of patients with celiac disease. J Clin Gastroenterol 50:551–560

    Article  CAS  PubMed  Google Scholar 

  62. Mitchell LA, Overgaard CE, Ward C, Margulies SS, Koval M (2011) Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function. American journal of physiology Lung cellular and molecular physiology 301:L40–L49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miyoshi Y, Tanabe S, Suzuki T (2016) Cellular zinc is required for intestinal epithelial barrier maintenance via the regulation of claudin-3 and occludin expression. American journal of physiology Gastrointestinal and liver physiology 311:G105–G116

    Article  PubMed  Google Scholar 

  64. Monsuur AJ, de Bakker PI, Alizadeh BZ, Zhernakova A, Bevova MR, Strengman E, Franke L, van’t Slot R, van Belzen MJ, Lavrijsen IC, Diosdado B, Daly MJ, Mulder CJ, Mearin ML, Meijer JW, Meijer GA, van Oort E, Wapenaar MC, Koeleman BP, Wijmenga C (2005) Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat Genet 37:1341–1344

    Article  CAS  PubMed  Google Scholar 

  65. Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96:511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nielsen HL, Nielsen H, Ejlertsen T, Engberg J, Gunzel D, Zeitz M, Hering NA, Fromm M, Schulzke JD, Bucker R (2011) Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells. PLoS One 6:e23858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ohtsuki S, Sato S, Yamaguchi H, Kamoi M, Asashima T, Terasaki T (2007) Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J Cell Physiol 210:81–86

    Article  CAS  PubMed  Google Scholar 

  70. Osada T, Gu YH, Kanazawa M, Tsubota Y, Hawkins BT, Spatz M, Milner R, del Zoppo GJ (2011) Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by beta(1)-integrins. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 31:1972–1985

    Article  CAS  Google Scholar 

  71. Oshima T, Miwa H, Joh T (2008) Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol 23(Suppl 2):S146–S150

    Article  CAS  PubMed  Google Scholar 

  72. Piche T, Barbara G, Aubert P, Bruley des Varannes S, Dainese R, Nano JL, Cremon C, Stanghellini V, De Giorgio R, Galmiche JP, Neunlist M (2009) Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 58:196–201

    Article  CAS  PubMed  Google Scholar 

  73. Poritz LS, Harris LR 3rd, Kelly AA, Koltun WA (2011) Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig Dis Sci 56:2802–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Prasad S, Mingrino R, Kaukinen K, Hayes KL, Powell RM, MacDonald TT, Collins JE (2005) Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Laboratory investigation; a journal of technical methods and pathology 85:1139–1162

    Article  CAS  PubMed  Google Scholar 

  75. Rahner C, Mitic LL, Anderson JM (2001) Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120:411–422

    Article  CAS  PubMed  Google Scholar 

  76. Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M, Turner JR (2010) Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell 21:1200–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reiter B, Kraft R, Gunzel D, Zeissig S, Schulzke JD, Fromm M, Harteneck C (2006) TRPV4-mediated regulation of epithelial permeability. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20:1802–1812

    Article  CAS  Google Scholar 

  78. Rokkam D, Lafemina MJ, Lee JW, Matthay MA, Frank JA (2011) Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs. Am J Pathol 179:1081–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke JD, Amasheh S, Gunzel D, Fromm M (2010) Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 123:1913–1921

    Article  CAS  PubMed  Google Scholar 

  80. Saeedi BJ, Kao DJ, Kitzenberg DA, Dobrinskikh E, Schwisow KD, Masterson JC, Kendrick AA, Kelly CJ, Bayless AJ, Kominsky DJ, Campbell EL, Kuhn KA, Furuta GT, Colgan SP, Glover LE (2015) HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity. Mol Biol Cell 26:2252–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sandle GI (2005) Pathogenesis of diarrhea in ulcerative colitis: new views on an old problem. J Clin Gastroenterol 39:S49–S52

    Article  PubMed  Google Scholar 

  82. Sandle GI, Higgs N, Crowe P, Marsh MN, Venkatesan S, Peters TJ (1990) Cellular basis for defective electrolyte transport in inflamed human colon. Gastroenterology 99:97–105

    CAS  PubMed  Google Scholar 

  83. Schmitz H, Barmeyer C, Fromm M, Runkel N, Foss HD, Bentzel CJ, Riecken EO, Schulzke JD (1999) Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 116:301–309

    Article  CAS  PubMed  Google Scholar 

  84. Schulzke JD, Bentzel CJ, Schulzke I, Riecken EO, Fromm M (1998) Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue. Pediatr Res 43:435–441

    Article  CAS  PubMed  Google Scholar 

  85. Schulzke JD, Schulzke I, Fromm M, Riecken EO (1995) Epithelial barrier and ion transport in coeliac sprue: electrical measurements on intestinal aspiration biopsy specimens. Gut 37:777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schumann M, Gunzel D, Buergel N, Richter JF, Troeger H, May C, Fromm A, Sorgenfrei D, Daum S, Bojarski C, Heyman M, Zeitz M, Fromm M, Schulzke JD (2012) Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut 61:220–228

    Article  CAS  PubMed  Google Scholar 

  87. Schumann M, Richter JF, Wedell I, Moos V, Zimmermann-Kordmann M, Schneider T, Daum S, Zeitz M, Fromm M, Schulzke JD (2008) Mechanisms of epithelial translocation of the alpha(2)-gliadin-33mer in coeliac sprue. Gut 57:747–754

    Article  CAS  PubMed  Google Scholar 

  88. Shoar S, Saber AA, Aladdin M, Bashah MM, AlKuwari MJ, Rizwan M, Rosenthal RJ (2016) Bariatric manipulation of gastric arteries: a systematic review on the potential concept for obesity treatment. Int J Surg 36:177–182

    Article  PubMed  Google Scholar 

  89. Stamatovic SM, Keep RF, Wang MM, Jankovic I, Andjelkovic AV (2009) Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. J Biol Chem 284:19053–19066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Steed E, Rodrigues NT, Balda MS, Matter K (2009) Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC cell biology 10:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Stio M, Retico L, Annese V, Bonanomi AG (2016) Vitamin D regulates the tight-junction protein expression in active ulcerative colitis. Scand J Gastroenterol 51:1193–1199

    Article  CAS  PubMed  Google Scholar 

  92. Szakal DN, Gyorffy H, Arato A, Cseh A, Molnar K, Papp M, Dezsofi A, Veres G (2010) Mucosal expression of claudins 2, 3 and 4 in proximal and distal part of duodenum in children with coeliac disease. Virchows Archiv : an international journal of pathology 456:245–250

    Article  CAS  Google Scholar 

  93. Tamura A, Hayashi H, Imasato M, Yamazaki Y, Hagiwara A, Wada M, Noda T, Watanabe M, Suzuki Y, Tsukita S (2011) Loss of claudin-15, but not claudin-2, causes Na + deficiency and glucose malabsorption in mouse small intestine. Gastroenterology 140:913–923

    Article  CAS  PubMed  Google Scholar 

  94. Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, Tsukita S, Tsukita S (2008) Megaintestine in claudin-15-deficient mice. Gastroenterology 134:523–534

    Article  CAS  PubMed  Google Scholar 

  95. Thuijls G, Derikx JP, de Haan JJ, Grootjans J, de Bruine A, Masclee AA, Heineman E, Buurman WA (2010) Urine-based detection of intestinal tight junction loss. J Clin Gastroenterol 44:e14–e19

    Article  PubMed  Google Scholar 

  96. Tian R, Luo Y, Liu Q, Cai M, Li J, Sun W, Wang J, He C, Liu Y, Liu X (2014) The effect of claudin-5 overexpression on the interactions of claudin-1 and -2 and barrier function in retinal cells. Curr Mol Med 14:1226–1237

    Article  CAS  PubMed  Google Scholar 

  97. van Elburg RM, Uil JJ, Mulder CJ, Heymans HS (1993) Intestinal permeability in patients with coeliac disease and relatives of patients with coeliac disease. Gut 34:354–357

    Article  PubMed  PubMed Central  Google Scholar 

  98. Van Itallie C, Rahner C, Anderson JM (2001) Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107:1319–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Van Itallie CM, Fanning AS, Anderson JM (2003) Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. American journal of physiology Renal physiology 285:F1078–F1084

    Article  CAS  PubMed  Google Scholar 

  100. Wang F, Daugherty B, Keise LL, Wei Z, Foley JP, Savani RC, Koval M (2003) Heterogeneity of claudin expression by alveolar epithelial cells. Am J Respir Cell Mol Biol 29:62–70

    Article  CAS  PubMed  Google Scholar 

  101. Wapenaar MC, Monsuur AJ, van Bodegraven AA, Weersma RK, Bevova MR, Linskens RK, Howdle P, Holmes G, Mulder CJ, Dijkstra G, van Heel DA, Wijmenga C (2008) Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis. Gut 57:463–467

    Article  CAS  PubMed  Google Scholar 

  102. Watari A, Hasegawa M, Yagi K, Kondoh M (2016) Checkpoint kinase 1 activation enhances intestinal epithelial barrier function via regulation of claudin-5 expression. PLoS One 11:e0145631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Watson RE, Poddar R, Walker JM, McGuill I, Hoare LM, Griffiths CE, O’Neill CA (2007) Altered claudin expression is a feature of chronic plaque psoriasis. J Pathol 212:450–458

    Article  CAS  PubMed  Google Scholar 

  104. Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR (2008) Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Laboratory investigation; a journal of technical methods and pathology 88:1110–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Willemsen LE, Hoetjes JP, van Deventer SJ, van Tol EA (2005) Abrogation of IFN-gamma mediated epithelial barrier disruption by serine protease inhibition. Clin Exp Immunol 142:275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wisner DM, Harris LR 3rd, Green CL, Poritz LS (2008) Opposing regulation of the tight junction protein claudin-2 by interferon-gamma and interleukin-4. J Surg Res 144:1–7

    Article  CAS  PubMed  Google Scholar 

  107. Wray C, Mao Y, Pan J, Chandrasena A, Piasta F, Frank JA (2009) Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury. American journal of physiology Lung cellular and molecular physiology 297:L219–L227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yu AS, Enck AH, Lencer WI, Schneeberger EE (2003) Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem 278:17350–17359

    Article  CAS  PubMed  Google Scholar 

  109. Yuan L, Le Bras A, Sacharidou A, Itagaki K, Zhan Y, Kondo M, Carman CV, Davis GE, Aird WC, Oettgen P (2012) ETS-related gene (ERG) controls endothelial cell permeability via transcriptional regulation of the claudin 5 (CLDN5) gene. J Biol Chem 287:6582–6591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56:61–72

    Article  CAS  PubMed  Google Scholar 

  111. Zhou W, Cao Q, Peng Y, Zhang QJ, Castrillon DH, DePinho RA, Liu ZP (2009) FoxO4 inhibits NF-kappaB and protects mice against colonic injury and inflammation. Gastroenterology 137:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the Deutsche Forschungsgemeinschaft (DFG), grants SCHU 559/11-2 and FR 652/12-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg-Dieter Schulzke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barmeyer, C., Fromm, M. & Schulzke, JD. Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases. Pflugers Arch - Eur J Physiol 469, 15–26 (2017). https://doi.org/10.1007/s00424-016-1914-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1914-6

Keywords

Navigation