Skip to main content
Log in

The effect of AQP3 deficiency on fuel selection during a single bout of exhausting exercise

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Aquaporin-3 (AQP3) is an integral membrane protein that facilitates the transport of water and glycerol across cell membranes. However, the precise localization and function of AQP3 in skeletal muscles is currently unknown. In this study, we investigated the capacity of AQP3 knockout mice to perform a single bout of exhausting exercise and analyzed the parameters related to skeletal muscle energy metabolism during exhausting exercise. Mice were exposed to a single bout of treadmill running at a speed of 12 m/min with 10° inclination until exhaustion, and sacrificed immediately, 24 h and 48 h after exercise. Both immunohistochemistry and double immunofluorescence staining revealed that AQP3 is expressed at the cell surface with no evidence of colocalization with either AQP1 or AQP4 in hamstring skeletal muscles. When exposed to a single bout of exhaustive exercise, AQP3 knockout mice fatigued more easily with the average time to exhaustion shorter than the wild-type mice. After exhausting exercise, plasma glucose, muscle glycogen, muscle triglyceride, and muscle free fatty acid levels decreased compared with the values before exercise in both AQP3 knockout and wild-type mice. However, muscle glycerol concentration after exercise decreased in the wild-type mice, but rather increased in AQP3 knockout mice. These findings suggest that decreased glycerol efflux from the skeletal muscles in AQP3 knockout mice may result in low exercise capacity, presumably due to the limitations in the constant energy supply through hepatic gluconeogenesis from glycerol during the prolonged endurance exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Badin PM, Langin D, Moro C (2013) Dynamics of skeletal muscle lipid pools. Trends Endocrinol Metab 12:607–615. doi:10.1016/j.tem.2013.08.001

    Article  Google Scholar 

  2. Boesch C, Slotboom J, Hoppeler H, Kreis R (1997) In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med 37(4):484–493

    Article  CAS  PubMed  Google Scholar 

  3. Brooks G, Mercier J (1994) Balance of carbohydrate and lipid utilization during exercise: The “crossover” concept. J Appl Physiol 76:2253–2261

    CAS  PubMed  Google Scholar 

  4. Coleman RA, Mashek DG (2011) Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 111(10):6359–6386. doi:10.1021/cr100404w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coyle EF (1995) Fat metabolism during exercise. Sports Sci Exch 8(6):1–6

    Google Scholar 

  6. Crosbie RH, Dovico SA, Flanagan JD, Chamberlain JS, Ownby CL, Campbell KP (2002) Characterization of aquaporin-4 in muscle and muscular dystrophy. FASEB J 16(9):943–949

    Article  CAS  PubMed  Google Scholar 

  7. Eng CM, Smallwood LH, Rainiero MP, Lahey M, Ward SR, Lieber RL (2008) Scaling of muscle architecture and fiber types in the rat hindlimb. J Exp Biol 211(Pt 14):2336–2345. doi:10.1242/jeb.017640

    Article  PubMed  Google Scholar 

  8. Frank MS, Nahata MC, Hilty MD (1981) Glycerol: a review of its pharmacology, pharmacokinetics, adverse reactions, and clinical use. Pharmacotherapy 1:147–160

    Article  CAS  PubMed  Google Scholar 

  9. Frigeri A, Nicchia GP, Balena R, Nico B, Svelto M (2004) Aquaporins in skeletal muscle: reassessment of the functional role of aquaporin-4. FASEB J 18(7):907–950

    Google Scholar 

  10. Frigeri A, Nicchia GP, Verbavatz JM, Valenti G, Svelto M (1998) Expression of aquaporin-4 in fast twitch fibers of mammalian skeletal muscle. J Clin Invest 102(4):695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaitanos GC, Williams C, Boobis LH, Brooks S (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75(2):712–719

    CAS  PubMed  Google Scholar 

  12. Hara-Chikuma M, Verkman AS (2006) Physiological roles of glycerol-transporting aquaporins: the aquaglyceroporins. Cell Mol Life Sci 63:1386–1392

    Article  CAS  PubMed  Google Scholar 

  13. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR (2014) Integrative biology of exercise. Cell 159(4):738–749. doi:10.1016/j.cell.2014.10.029

    Article  CAS  PubMed  Google Scholar 

  14. Høydal MA, Wisløff U, Kemi OJ, Ellingsen O (2007) Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev Rehabil 14(6):753–760

    Article  PubMed  Google Scholar 

  15. Inoue M, Wakayama Y, Kojima H, Shibuya S, Jimi T, Hara H, Iijima S, Masaki H, Oniki H, Matsuzaki Y (2009) Aquaporin 9 expression and its localization in normal skeletal myofiber. J Mol Histol 40(3):165–170. doi:10.1007/s10735-009-9226-1

    Article  CAS  PubMed  Google Scholar 

  16. Ishibashi K, Hara S, Kondo S (2009) Aquaporin water channels in mammals. Clin Exp Nephrol 13:107–117. doi:10.1007/s10157-008-0118-6

    Article  CAS  PubMed  Google Scholar 

  17. Jelen S, Wacker S, Aponte-Santamaría C, Skott M, Rojek A, Johanson U, Kjellbom P, Nielsen S, de Groot BL, Rützler M (2011) Aquaporin-9 protein is the primary route of hepatocyte glycerol uptake for glycerol gluconeogenesis in mice. J Biol Chem 286(52):44319–44325. doi:10.1074/jbc.M111.297002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jimi T, Wakayama Y, Inoue M (2006) Aquaporin 1: examination of its expression and localization in normal human skeletal muscle tissue. Cells Tissues Organs 184:181–187

    Article  CAS  PubMed  Google Scholar 

  19. Jones NL, Heigenhauser GJ, Kuksis A, Matsos CG, Sutton JR, Toews CJ (1980) Fat metabolism in heavy exercise. Clin Sci (Lond) 59(6):469–478

    Article  CAS  Google Scholar 

  20. Kohut ML, Boehm GW, Moynihan JA (2001) Moderate exercise is associated with enhanced antigen-specific cytokine, but not lgM production in aged mice. Mech Ageing Dev 122:1135–1150

    Article  CAS  PubMed  Google Scholar 

  21. Lo S, Russel JC, Taylor AW (1970) Determination of glycogen in small tissues. J Appl Physiol 28:234–236

    CAS  PubMed  Google Scholar 

  22. Ma T, Hasegawa H, Skach WR, Frigeri A, Verkman AS (1994) Expression functional analysis and in situ hybridization of a cloned rat kidney collecting duct water channel. Am J Physiol 266:C189–C197

    CAS  PubMed  Google Scholar 

  23. Pederson BA, Cope CR, Schroeder JM, Smith MW, Irimia JM, Thurberg BL, DePaoli-Roach AA, Roach PJ (2005) Exercise capacity of mice genetically lacking muscle glycogen synthase. J Biol Chem 280(17):17260–17265

    Article  CAS  PubMed  Google Scholar 

  24. Rauch LH, Bosch AN, Noakes TD, Dennis SC, Hawley JA (1995) Fuel utilisation during prolonged low-to-moderate intensity exercise when ingesting water or carbohydrate. Pflugers Arch 430(6):971–977

    Article  CAS  PubMed  Google Scholar 

  25. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Eolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265:E380–E391

    CAS  PubMed  Google Scholar 

  26. Skowronski MT, Lebeck J, Rojek A (2007) AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am J Physiol 292:956–965

    Google Scholar 

  27. Spriet LL (2002) Regulation of skeletal muscle fat oxidation during exercise in humans. Med Sci Sports Exerc 34(9):1477–1484

    Article  CAS  PubMed  Google Scholar 

  28. Umenishi F, Verkman AS, Gropper MA (1996) Quantitative analysis of aquaporin mRNA expression in rat tissues by RNase protection assay of aquaporin mRNA expression in rat tissues by RNase protection assay. DNA Cell Biol 15:475–480

    Article  CAS  PubMed  Google Scholar 

  29. Van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536(Pt 1):295–304

    Article  PubMed  PubMed Central  Google Scholar 

  30. Van Loon LJ, Thomason-Hughes M, Constantin-Teodosiu D, Koopman R, Greenhaff PL, Hardie DG, Keizer HA, Saris WH, Wagenmakers AJ (2005) Inhibition of adipose tissue lipolysis increases intramuscular lipid and glycogen use in vivo in humans. Am J Physiol Endocrinol Metab 289(3):E482–E493

    Article  PubMed  Google Scholar 

  31. Verkman AS (2005) Novel roles of aquaporins revealed by phenotype analysis of knockout mice. Rev Physiol Biochem Pharmacol 155:31–55

    Article  CAS  PubMed  Google Scholar 

  32. Wakayama Y (2010) Aquaporin expression in normal and pathological skeletal muscles: a brief review with focus on AQP4. J Biomed Biotechnol 731569. doi: 10.1155/2010/731569

  33. Wakayama Y, Inoue M, Kojima H, Jimi T, Shibuya S, Hara H, Oniki H (2004) Expression and localization of aquaporin 7 in normal skeletal myofiber. Cell Tissue Res 316:123–129

    Article  CAS  PubMed  Google Scholar 

  34. Wakayama Y, Jimi T, Inoue M, Kojima H, Shibuya S, Murahashi M, Hara H, Oniki H (2002) Expression of aquaporin 3 and its localization in normal skeletal myofibres. J Histochem 34:331–337

    Article  CAS  Google Scholar 

  35. Watt MJ, Heigenhauser GJ, Dyck DJ, Spriet LL (2002) Intramuscular triacylglycerol, glycogen and acetyl group metabolism during 4 h of moderate exercise in man. J Physiol 541(Pt 3):969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang B, Verbavatz JM, Song V, Vetrivel L, Manley G, Kao WM, Ma TN, Verkman VS (2000) Skeletal muscle function and water permeability in aquaporin-4 deficient mice. J Physiol 278:1108–1115

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Alan Verkman (UCSF, San Francisco, CA, USA) for providing AQP3 knockout mice. We thank Drs. Cheol Soo Choi and Shi-Young Park (Korea Mouse Metabolic Phenotyping Center, Gachon University, Incheon, Korea) for assistance with analysis of exercise training for mice. This work was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (2012-0009583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Rahn Bae.

Additional information

Ju Hyun Lim and Dong-Hwan Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J.H., Kim, DH., Han, D.W. et al. The effect of AQP3 deficiency on fuel selection during a single bout of exhausting exercise. Pflugers Arch - Eur J Physiol 468, 1283–1293 (2016). https://doi.org/10.1007/s00424-016-1827-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1827-4

Key words

Navigation