Skip to main content

Advertisement

Log in

Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The skeletal muscle ryanodine receptor Ca2+ release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years. There was a strong positive correlation between ASI(+)RyR1 and the percentage of type 2 fibers in the muscles (r = 0.725), and a correspondingly strong negative correlation between the percentages of ASI(+)RyR1 and percentage of type 1 fibers. When the type 2 fiber data were separated into type 2X and type 2A, the correlation with ASI(+)RyR1 was stronger in type 2X fibers (r = 0.781) than in type 2A fibers (r = 0.461). There was no significant correlation between age and either fiber-type composition or ASI(+)RyR1/ASI(−)RyR1 ratio. The results suggest that the reduced expression of ASI(−)RyR1 during development may reflect a reduction in type 1 fibers during development. Preferential expression of ASI(−) RyR1, having a higher gain of in Ca2+ release during EC coupling than ASI(+)RyR1, may compensate for the reduced terminal cisternae volume, fewer junctional contacts and reduced charge movement in type 1 fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agbulut O, Noirez P, Beaumont F, Butler-Browne G (2003) Myosin heavy chain isoforms in postnatal muscle development of mice. Biol Cell 95:399–406

    Article  PubMed  CAS  Google Scholar 

  2. Andersen JL (2003) Muscle fibre type adaptation in the elderly human muscle. Scand J Med Sci Sports 13:40–47

    Article  PubMed  Google Scholar 

  3. Andersen G, Orngreen MC, Preisler N, Colding-Jorgensen E, Clausen T, Duno M, Jeppesen TD, Vissing J (2013) Muscle phenotype in patients with myotonic dystrophy type 1. Muscle Nerve 47:409–415. doi:10.1002/mus.23535

    Article  PubMed  CAS  Google Scholar 

  4. Baylor SM, Hollingworth S (2012) Intracellular calcium movements during excitation-contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers. J Gen Physiol 139:261–272. doi:10.1085/jgp.201210773

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Burkholder TJ, Fingado B, Baron S, Lieber RL (1994) Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol 221:177–190. doi:10.1002/jmor.1052210207

    Article  PubMed  CAS  Google Scholar 

  6. Cheng W, Altafaj X, Ronjat M, Coronado R (2005) Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Proc Natl Acad Sci U S A 102:19225–19230. doi:10.1073/pnas.0504334102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Cvetko E, Karen P, Erzen I (2012) Myosin heavy chain composition of the human sternocleidomastoid muscle. Ann Anat 194:467–472. doi:10.1016/j.aanat.2012.05.001

    Article  PubMed  CAS  Google Scholar 

  8. Damiani E, Larsson L, Margreth A (1996) Age-related abnormalities in regulation of the ryanodine receptor in rat fast-twitch muscle. Cell Calcium 19:15–27

    Article  PubMed  CAS  Google Scholar 

  9. Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM (2001) Reparative myogenesis in long-term denervated skeletal muscles of adult rats results in a reduction of the satellite cell population. Anat Rec 263:139–154. doi:10.1002/ar.1087

    Article  PubMed  CAS  Google Scholar 

  10. Deschenes MR (2011) Motor unit and neuromuscular junction remodeling with aging. Curr Aging Sci 4:209–220

    Article  PubMed  CAS  Google Scholar 

  11. Dulhunty AF, Gage PW (1983) Asymmetrical charge movement in slow- and fast-twitch mammalian muscle fibres in normal and paraplegic rats. J Physiol 341:213–231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Essen-Gustavsson B, Borges O (1986) Histochemical and metabolic characteristics of human skeletal muscle in relation to age. Acta Physiol Scand 126:107–114. doi:10.1111/j.1748-1716.1986.tb07793.x

    Article  PubMed  CAS  Google Scholar 

  13. Franzini-Armstrong C, Ferguson DG, Champ C (1988) Discrimination between fast- and slow-twitch fibres of guinea pig skeletal muscle using the relative surface density of junctional transverse tubule membrane. J Muscle Res Cell Motil 9:403–414

    Article  PubMed  CAS  Google Scholar 

  14. Franzini-Armstrong C, Protasi F, Ramesh V (1999) Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles. Biophys J 77:1528–1539. doi:10.1016/S0006-3495(99)77000-1

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Futatsugi A, Kuwajima G, Mikoshiba K (1995) Tissue-specific and developmentally regulated alternative splicing in mouse skeletal muscle ryanodine receptor mRNA. Biochem J 305(Pt 2):373–378

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Harper PS (2001) Myotonic dystrophy. 3rd ed. / with a chapter on molecular and cell biology by J. David Brook and Emma Newman. edn. W.B. Saunders, London

  17. Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129

    Article  PubMed  CAS  Google Scholar 

  18. Kimura T, Lueck JD, Harvey PJ, Pace SM, Ikemoto N, Casarotto MG, Dirksen RT, Dulhunty AF (2009) Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium 45:264–274. doi:10.1016/j.ceca.2008.11.005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, Dirksen RT, Takahashi MP, Dulhunty AF, Sakoda S (2005) Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 14:2189–2200. doi:10.1093/hmg/ddi223

    Article  PubMed  CAS  Google Scholar 

  20. Kimura T, Pace SM, Wei L, Beard NA, Dirksen RT, Dulhunty AF (2007) A variably spliced region in the type 1 ryanodine receptor may participate in an inter-domain interaction. Biochem J 401:317–324. doi:10.1042/BJ20060686

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Lamboley CR, Murphy RM, McKenna MJ, Lamb GD (2013) Endogenous and maximal sarcoplasmic reticulum calcium content and calsequestrin expression in type I and type II human skeletal muscle fibres. J Physiol 591:6053–6068. doi:10.1113/jphysiol.2013.265900

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Larsson L, Sjodin B, Karlsson J (1978) Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 years. Acta Physiol Scand 103:31–39. doi:10.1111/j.1748-1716.1978.tb06187.x

    Article  PubMed  CAS  Google Scholar 

  23. Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50 Spec No:11–16

  24. Lexell J, Taylor CC, Sjostrom M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84:275–294

    Article  PubMed  CAS  Google Scholar 

  25. Mizunoya W, Wakamatsu J, Tatsumi R, Ikeuchi Y (2008) Protocol for high-resolution separation of rodent myosin heavy chain isoforms in a mini-gel electrophoresis system. Anal Biochem 377:111–113. doi:10.1016/j.ab.2008.02.021

    Article  PubMed  CAS  Google Scholar 

  26. O’Connell K, Gannon J, Doran P, Ohlendieck K (2008) Reduced expression of sarcalumenin and related Ca2+−regulatory proteins in aged rat skeletal muscle. Exp Gerontol 43:958–961. doi:10.1016/j.exger.2008.07.006

    Article  PubMed  Google Scholar 

  27. Porter MM, Vandervoort AA, Lexell J (1995) Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports 5:129–142

    Article  PubMed  CAS  Google Scholar 

  28. Renganathan M, Messi ML, Delbono O (1997) Dihydropyridine receptor-ryanodine receptor uncoupling in aged skeletal muscle. J Membr Biol 157:247–253

    Article  PubMed  CAS  Google Scholar 

  29. Renganathan M, Messi ML, Delbono O (1998) Overexpression of IGF-1 exclusively in skeletal muscle prevents age-related decline in the number of dihydropyridine receptors. J Biol Chem 273:28845–28851

    Article  PubMed  CAS  Google Scholar 

  30. Rhee HS, Lucas CA, Hoh JF (2004) Fiber types in rat laryngeal muscles and their transformations after denervation and reinnervation. J Histochem Cytochem 52:581–590

    Article  PubMed  CAS  Google Scholar 

  31. Rivero JL, Talmadge RJ, Edgerton VR (1998) Fibre size and metabolic properties of myosin heavy chain-based fibre types in rat skeletal muscle. J Muscle Res Cell Motil 19:733–742

    Article  PubMed  CAS  Google Scholar 

  32. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531. doi:10.1152/physrev.00031.2010

    Article  PubMed  CAS  Google Scholar 

  33. Soukup T, Diallo M (2015) Proportions of myosin heavy chain mRNAs, protein isoforms and fiber types in the slow and fast skeletal muscles are maintained after alterations of thyroid status in rats. Physiol Res 64:111–118

    PubMed  CAS  Google Scholar 

  34. Talmadge RJ, Roy RR (1993) Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms. J Appl Physiol 75:2337–2340

    PubMed  CAS  Google Scholar 

  35. Xu L, Wang Y, Yamaguchi N, Pasek DA, Meissner G (2008) Single channel properties of heterotetrameric mutant RyR1 ion channels linked to core myopathies. J Biol Chem 283:6321–6329. doi:10.1074/jbc.M707353200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Yan Z, Bai XC, Yan C, Wu J, Li Z, Xie T, Peng W, Yin CC, Li X, Scheres SH, Shi Y, Yan N (2015) Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517:50–55. doi:10.1038/nature14063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Yu F, Hedstrom M, Cristea A, Dalen N, Larsson L (2007) Effects of ageing and gender on contractile properties in human skeletal muscle and single fibres. Acta Physiol (Oxf) 190:229–241. doi:10.1111/j.1748-1716.2007.01699.x

    Article  CAS  Google Scholar 

  38. Zorzato F, Sacchetto R, Margreth A (1994) Identification of two ryanodine receptor transcripts in neonatal, slow-, and fast-twitch rabbit skeletal muscles. Biochem Biophys Res Commun 203:1725–1730. doi:10.1006/bbrc.1994.2385

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Suzy Pace and to Joan Stivala for assistance with the collection of the human tissue and to NA Beard for helpful comment on the manuscript. The work was supported by grants from the National Health and Medical Research Council APP1020589 and APP1002589 as well as an Australian Postgraduate Award and a John Curtin School of Medical Research supplementary scholarship to HW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela F. Dulhunty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willemse, H., Theodoratos, A., Smith, P.N. et al. Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition. Pflugers Arch - Eur J Physiol 468, 269–278 (2016). https://doi.org/10.1007/s00424-015-1738-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1738-9

Keywords

Navigation