Skip to main content
Log in

Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Dorsal root ganglion (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 μM) or low-intensity blue light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8−/−), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and, at higher concentrations, progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ChT:

Chloramine-T

DRG:

Dorsal root ganglion

DTT:

Dithiothreitol

NADPH:

Nicotinamide adenine dinucleotide phosphate

Nox:

NADPH oxidase

ROS:

Reactive oxygen species

tBHP:

tert-Butyl hydroperoxide

TTX:

Tetrodotoxin

TTX-r:

Tetrodotoxin-resistant

TTX-s:

Tetrodotoxin-sensitive

wt:

Wild type

References

  1. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2012) Principles of neural science, 5th edn. McGraw-Hill, New York

    Google Scholar 

  2. Usoskin D, Furlan A, Abdo H, Lönnerberg P, Lou D, Hjerline-Leffler J, Haeggström J, Kharchenko O, Kharchenko PV, Linnarsson S, Emfors P (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18:145–153

    Article  PubMed  CAS  Google Scholar 

  3. Black JA, Dib-Hajj S, McNabola K, Jeste S, Rizzo MA, Kocsis JD, Waxman SG (1996) Spinal sensory neurons express multiple sodium channel α-subunit mRNAs. Brain Res Mol Brain Res 43:117–131

    Article  PubMed  CAS  Google Scholar 

  4. Ho C, O’Leary ME (2011) Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Mol Cell Neurosci 46:159–166

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SM (2003) The TTX-resistant sodium channel NaV1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 550:739–752

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Renganathan M, Cummins TR, Waxman SG (2001) Contribution of NaV1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86:629–640

    PubMed  CAS  Google Scholar 

  7. Ramachandra R, McGrew SY, Baxter JC, Howard JR, Elmslie KS (2013) NaV1.8 channels are expressed in large, as well as small, diameter sensory afferent neurons. Channels (Austin) 7:34–37

    Article  CAS  Google Scholar 

  8. Shields SD, Ahn HS, Yang Y, Han C, Seal RP, Wood JN, Waxman SG, Dib-Hajj SD (2012) NaV1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 153:2017–2030

    Article  PubMed  CAS  Google Scholar 

  9. Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Linley JE, Ooi L, Pettinger L, Kirton H, Boyle JP, Peers C, Gamper N (2012) Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proc Natl Acad Sci U S A 109:E1578–E1586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:1005–1028

    Google Scholar 

  12. Schmeichel AM, Schmelzer JD, Low PA (2003) Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52:165–171

    Article  PubMed  CAS  Google Scholar 

  13. Vincent AM, Kato K, McLean LL, Soules ME, Feldman EL (2009) Sensory neurons and Schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. Antioxid Redox Signal 11:425–438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Persson A-K, Kim I, Zhao P, Estacion M, Black JA, Waxman SG (2013) Sodium channels contribute to degeneration of dorsal root ganglion neurites induced by mitochondrial dysfunction in an in vitro model of axonal injury. J Neurosci 33:19250–19261

    Article  PubMed  CAS  Google Scholar 

  15. Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y (2012) Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 50:264–274

    Article  PubMed  CAS  Google Scholar 

  16. Deavall DG, Martin EA, Horner JM, Roberts R (2012) Drug-induced oxidative stress and toxicity. J Toxicol 2012:1–13

    Article  Google Scholar 

  17. Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1366:53–67

    Article  PubMed  CAS  Google Scholar 

  18. Gamper N, Ooi L (2014) Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid Redox Signal 22:486–504

    Article  PubMed  Google Scholar 

  19. Liu M, Liu H, Dudley SC (2010) Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circ Res 107:967–974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Sesti F, Liu S, Cai S-Q (2010) Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration? Trends Cell Biol 20:45–51

    Article  PubMed  CAS  Google Scholar 

  21. Salvemini D, Little JW, Doyle T, Neumann WL (2011) Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51:951–966

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Wang Z, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E, Muscoli C, Mollace V, Ndengele M, Ischiropoulos H, Salvemini D (2004) A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 309:869–878

    Article  PubMed  CAS  Google Scholar 

  23. Kallenborn-Gerhardt W, Schroder K, Del Turco D, Lu R, Kynast K, Kosowski J, Niederberger E, Shah AM, Brandes RP, Geisslinger G, Schmidtko A (2012) NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci 32:10136–10145

    Article  PubMed  CAS  Google Scholar 

  24. Ibi M, Matsuno K, Shiba D, Katsuyama M, Iwata K, Kakehi T, Nakagawa T, Sango K, Shirai Y, Yokoyama T, Kaneko S, Saito N, Yabe-Nishimura C (2008) Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J Neurosci 28:9486–9494

    Article  PubMed  CAS  Google Scholar 

  25. Hsieh C-P (2008) Redox modulation of A-type K+ currents in pain-sensing dorsal root ganglion neurons. Biochem Biophys Res Commun 370:445–449

    Article  PubMed  CAS  Google Scholar 

  26. Prasad M, Goyal RK (2004) Differential modulation of voltage-dependent K+ currents in colonic smooth muscle by oxidants. Am J Physiol Cell Physiol 268:C671–C682

    Article  Google Scholar 

  27. Ruppersberg JP, Stacker M, Pongs O, Heinemann SH, Frank R, Koenen M (1991) Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 352:711–714

    Article  PubMed  CAS  Google Scholar 

  28. Wang W, Gu J, Li Y-Q, Tao Y-X (2011) Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? Mol Pain 7:16–25

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kassmann M, Hansel A, Leipold E, Birkenbeil J, Lu S-Q, Hoshi T, Heinemann SH (2008) Oxidation of multiple methionine residues impairs rapid sodium channel inactivation. Pflugers Arch - Eur J Physiol 456:1085–1095

    Article  CAS  Google Scholar 

  30. Jarvis MF, Honore P, Shieh C-C, Chapman M, Joshi S, Zhang X-F, Kort M, Carroll W, Marron B, Atkinson R, Thomas J, Liu D, Krambis M, Liu Y, McGaraughty S, Chu K, Roeloffs R, Zhong C, Mikusa JP, Hernandez G, Gauvin D, Wade C, Zhu C, Pai M, Scanio M, Shi L, Drizin I, Gregg R, Matulenko M, Hakeem A, Gross M, Johnson M, Marsh K, Wagoner PK, Sullivan JP, Faltynek CR, Krafte DS (2007) A-803467, a potent and selective NaV1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci U S A 104:8520–8525

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548

    Article  PubMed  CAS  Google Scholar 

  32. Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V, Grose D, Gunthorpe MJ, Chessell IP, Tate S, Green PJ, Woolf CJ (2006) The voltage-gated sodium channel NaV1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 26:12852–12860

    Article  PubMed  CAS  Google Scholar 

  33. Anraku M, Kragh-Hansen U, Kawai K, Maruyama T, Yamasaki Y, Takakura Y, Otagiri M (2003) Validation of the chloramine-T induced oxidation of human serum albumin as a model for oxidative damage in vivo. Pharm Res 20:684–692

    Article  PubMed  CAS  Google Scholar 

  34. Shechter Y, Burstein Y, Patchornik A (1975) Selective oxidation of methionine residues in proteins. Biochemistry 14:4497–4503

    Article  PubMed  CAS  Google Scholar 

  35. Lau D, Baldus S (2006) Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther 111:16–26

    Article  PubMed  CAS  Google Scholar 

  36. Pattison DI, Davies MJ (2006) Evidence for rapid inter- and intramolecular chlorine transfer reactions of histamine and carnosine chloramines: implications for the prevention of hypochlorous-acid-mediated damage. Biochemistry 45:8152–8162

    Article  PubMed  CAS  Google Scholar 

  37. Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M, Kaplan D, Lubart R (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278:40917–40922

    Article  PubMed  CAS  Google Scholar 

  38. Ojha NK, Nematian-Ardestani E, Neugebauer S, Borowski B, El-Hussein A, Hoshi T, Leipold E, Heinemann SH (2014) Sodium channels as gateable non-photonic sensors for membrane-delimited reactive species. Biochim Biophys Acta Biomembr 1838:1412–1419

    Article  CAS  Google Scholar 

  39. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically actrivated cation channels. Science 330:55–60

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. McCarter GC, Reichling DB, Levine JD (1999) Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci Lett 273:179–182

    Article  PubMed  CAS  Google Scholar 

  41. Wang GK (1984) Irreversible modification of sodium channel inactivation in toad myelinated nerve fibres by the oxidant chloramine-T. J Physiol 364:127–141

    Article  Google Scholar 

  42. Higure Y, Katayama Y, Takeuchi K, Ohtubo Y, Yoshii K (2003) Lucifer Yellow slows voltage-gated Na+ current inactivation in a light-dependent manner in mice. J Physiol 550:159–167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Godley BF, Shamsi FA, Liang F-Q, Jarrett SG, Davies S, Boulton M (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280:21061–21066

    Article  PubMed  CAS  Google Scholar 

  44. King A, Gottlieb E, Brooks DG, Murphy MP, Dunaief JL (2004) Mitochondria-derived reactive oxygen species mediate blue light-induced death of retinal pigment epithelial cells. Photochem Photobiol 79:470–475

    Article  PubMed  CAS  Google Scholar 

  45. Scott B, Leu J, Cinader B (1988) Effects of aging on neuronal electrical membrane properties. Mech Ageing Dev 44:203–214

    Article  PubMed  CAS  Google Scholar 

  46. Tan Z-Y, Piekarz AD, Priest BT, Knopp KL, Krajewski JL, McDermott JS, Nisenbaum ES, Cummins TR (2014) Tetrodotoxin-resistant sodium channels in sensory neurons generate slow resurgent currents that are enhanced by inflammatory mediators. J Neurosci 34:7190–7197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Gamper N, Zaika O, Li Y, Martin P, Hernandez CC, Perez MR, Wang AYC, Jaffe DB, Shapiro MS (2006) Oxidative modification of M-type K+ channels as a mechanism of cytoprotective neuronal silencing. EMBO J 25:4996–5004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Li WEI, Gao S, Lv C, Wu Y, Guo Z, Ding J (2007) Characterization of voltage- and Ca2+-activated K+ channels in rat dorsal root ganglion neurons. J Cell Physiol 212:348–357

    Article  PubMed  CAS  Google Scholar 

  49. DiChiara TJ, Reinhart PH (1997) Redox modulation of hSlo Ca2+-activated K+ channels. J Neurosci 17:4942–4955

    PubMed  CAS  Google Scholar 

  50. Nelson MT, Joksovic PM, Su P, Kang H-W, Van Deusen A, Baumgart JP, David LS, Snutch TP, Barrett PQ, Lee J-H, Zorumski CF, Perez-Reyes E, Todorovic SM (2007) Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. J Neurosci 27:12577–12583

    Article  PubMed  CAS  Google Scholar 

  51. Waxman SG, Zamponi GW (2014) Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci 17:153–163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Scn10a and Scn11a knockout mice were generously provided by Dr. John N. Wood, London, UK.

Funding

This work was supported by the German Research Foundation RTG 1715 (S.H.H.) and LE2338/3-1 (E.L.), the Interdisciplinary Center for Clinical Research, Jena (M.S.), the Landesgraduiertenprogramm Thüringen (J.S.), and the National Institutes of Health (T.H.).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan H. Heinemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.83 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schink, M., Leipold, E., Schirmeyer, J. et al. Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons. Pflugers Arch - Eur J Physiol 468, 99–110 (2016). https://doi.org/10.1007/s00424-015-1735-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1735-z

Keywords

Navigation