Skip to main content
Log in

Identification and functional characterization of TRPA1 in human myoblasts

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The proper function of the skeletal muscle is essential for the survival of most animals. Thus, efficient and rapid repair of muscular damage following injury is crucial. In recent years, satellite cells have emerged as key players of muscle repair, capable of undergoing extensive proliferation after injury, fusing into myotubes and restoring muscle function. Furthermore, it has been shown that Ca2+/calmodulin-dependent generation of nitric oxide (NO) is an important regulator of muscle repair. Here, we demonstrate the functional expression of transient receptor potential, subfamily A1 (TRPA1) channel in human primary myoblasts. Stimulation of these cells with well-known TRPA1 ligands led to robust intracellular Ca2+ rises which could be inhibited by specific TRPA1 antagonists. Moreover, we show that TRPA1 activation enhances important aspects of skeletal muscle repair such as cell migration and myoblast fusion in vitro. Interestingly, TRPA1 levels and inducible Ca2+ transients decline with ongoing myoblast differentiation. We suggest that TRPA1 might serve as a physiological mediator for inflammatory signals and appears to have a functional role in promoting myoblast migration, fusion, and potentially also in activating satellite cells in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abmayr SM, Pavlath GK (2012) Myoblast fusion: lessons from flies and mice. Development 139:641–56. doi:10.1242/dev.068353

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165:307–12. doi:10.1002/jcp.1041650211

    Article  PubMed  CAS  Google Scholar 

  3. Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11:1859–74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Arnaudeau S, Holzer N, Bader CR, Bernheim L (2006) Calcium sources used by post-natal human myoblasts during initial differentiation. 445:435–445.

  5. Bae G-U, Gaio U, Yang Y-J, Lee H-J, Kang J-S, Krauss RS (2008) Regulation of myoblast motility and fusion by the CXCR4-associated sialomucin, CD164. J Biol Chem 283:8301–9. doi:10.1074/jbc.M706730200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–57

    Article  PubMed  CAS  Google Scholar 

  7. Bastian P, Lang K, Niggemann B, Zaenker KS, Entschladen F (2005) Myosin regulation in the migration of tumor cells and leukocytes within a three-dimensional collagen matrix. Cell Mol Life Sci 62:65–76. doi:10.1007/s00018-004-4391-6

    Article  PubMed  CAS  Google Scholar 

  8. Bautista DM, Pellegrino M, Tsunozaki M (2012) TRPA1: a gatekeeper for inflammation. Annu Rev Physiol 75:181–200. doi:10.1146/annurev-physiol-030212-183811

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bessac BF, Jordt S-E (2008) Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda) 23:360–70. doi:10.1152/physiol.00026.2008

    Article  CAS  Google Scholar 

  10. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt S-E (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118:1899–1910. doi:10.1172/JCI34192

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14:167–96. doi:10.1146/annurev.cellbio.14.1.167

    Article  PubMed  CAS  Google Scholar 

  12. Brierley SM, Castro J, Harrington AM, Hughes PA, Page AJ, Rychkov GY, Blackshaw LA (2011) TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J Physiol 589:3575–93. doi:10.1113/jphysiol.2011.206789

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Chen J, Joshi SK, DiDomenico S, Perner RJ, Mikusa JP, Gauvin DM, Segreti JA, Han P, Zhang X-F et al (2011) Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain 152:1165–72. doi:10.1016/j.pain.2011.01.049

    Article  PubMed  CAS  Google Scholar 

  14. Constantin B, Cognard C, Raymond G (1996) Myoblast fusion requires cytosolic calcium elevation but not activation of voltage-dependent calcium channels. Cell Calcium 19:365–74

    Article  PubMed  CAS  Google Scholar 

  15. David JD, See WM, Higginbotham CA (1981) Fusion of chick embryo skeletal myoblasts: role of calcium influx preceding membrane union. Dev Biol 82:297–307

    Article  PubMed  CAS  Google Scholar 

  16. Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, de la Roche J, Fischer M et al (2014) H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO–TRPA1–CGRP signalling pathway. Nat Commun 5:4381

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Eid SR, Crown ED, Moore EL, Liang HA, Choong K-C, Dima S, Henze DA, Kane SA, Urban MO (2008) HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol Pain 4:48. doi:10.1186/1744-8069-4-48

    Article  PubMed  PubMed Central  Google Scholar 

  18. Filippin LI, Cuevas MJ, Lima E, Marroni NP, Gonzalez-Gallego J, Xavier RM (2011) Nitric oxide regulates the repair of injured skeletal muscle. Nitric Oxide Biol Chem 24:43–9. doi:10.1016/j.niox.2010.11.003

    Article  CAS  Google Scholar 

  19. Filippin LI, Moreira AJ, Marroni NP, Xavier RM (2009) Nitric oxide and repair of skeletal muscle injury. Nitric Oxide Biol Chem 21:157–63. doi:10.1016/j.niox.2009.08.002

    Article  CAS  Google Scholar 

  20. Griffin CA, Apponi LH, Long KK, Pavlath GK (2010) Chemokine expression and control of muscle cell migration during myogenesis. J Cell Sci 123:3052–60. doi:10.1242/jcs.066241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Griffin CA, Kafadar KA, Pavlath GK (2009) MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Dev Cell 7:649–61. doi:10.1016/j.devcel.2009.09.004

    Article  Google Scholar 

  22. Hannon K, Kudla AJ, McAvoy MJ, Clase KL, Olwin BB (1996) Differentially expressed fibroblast growth factors regulate skeletal muscle development through autocrine and paracrine mechanisms. J Cell Biol 132:1151–9

    Article  PubMed  CAS  Google Scholar 

  23. Hara M, Tabata K, Suzuki T, Do M-KQ, Mizunoya W, Nakamura M, Nishimura S, Tabata S, Ikeuchi Y et al (2012) Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am J Physiol Cell Physiol 302:C1741–50. doi:10.1152/ajpcell.00068.2012

    Article  PubMed  CAS  Google Scholar 

  24. Hindi SM, Tajrishi MM, Kumar A (2013) Signaling mechanisms in mammalian myoblast fusion. Sci Signal 6:re2. doi:10.1126/scisignal.2003832

    Article  PubMed  PubMed Central  Google Scholar 

  25. Horsley V, Friday BB, Matteson S, Kegley KM, Gephart J, Pavlath GK (2001) Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol 153:329–38

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113:483–94

    Article  PubMed  CAS  Google Scholar 

  27. Horsley V, Pavlath GK (2004) Forming a multinucleated cell: molecules that regulate myoblast fusion. Cells Tissues Organs 176:67–78. doi:10.1159/000075028

    Article  PubMed  Google Scholar 

  28. Jansen KM, Pavlath GK (2006) Mannose receptor regulates myoblast motility and muscle growth. J Cell Biol 174:403–413

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Jordt S-E, Bautista DM, Chuang H-H, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–5. doi:10.1038/nature02282

    Article  PubMed  CAS  Google Scholar 

  30. Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 106:1273–8. doi:10.1073/pnas.0808487106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Kolluru GK, Shen X, Kevil CG (2013) A tale of two gases: NO and H2S, foes or friends for life? Redox Biol 1:313–318. doi:10.1016/j.redox.2013.05.001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Lafreniere JF, Mills P, Bouchentouf M, Tremblay JP (2006) Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp Cell Res 312:1127–41. doi:10.1016/j.yexcr.2006.01.002

    Article  PubMed  CAS  Google Scholar 

  33. Lee SP, Buber MT, Yang Q, Cerne R, Cortés RY, Sprous DG, Bryant RW (2008) Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol 153:1739–49. doi:10.1038/bjp.2008.85

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Leloup L, Mazères G, Daury L, Cottin P, Brustis J-J (2006) Involvement of calpains in growth factor-mediated migration. Int J Biochem Cell Biol 38:2049–63. doi:10.1016/j.biocel.2006.04.012

    Article  PubMed  CAS  Google Scholar 

  35. Lennertz RC, Kossyreva EA, Smith AK, Stucky CL (2012) TRPA1 mediates mechanical sensitization in nociceptors during inflammation. PLoS One 7:e43597. doi:10.1371/journal.pone.0043597

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Lepper C, Partridge TA, Fan C-M (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–46. doi:10.1242/dev.067595

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Louis M, Zanou N, Van Schoor M, Gailly P (2008) TRPC1 regulates skeletal myoblast migration and differentiation. J Cell Sci 121:3951–9. doi:10.1242/jcs.037218

    Article  PubMed  CAS  Google Scholar 

  38. Lowenstein CJ, Dinerman JL, Snyder SH (1994) Nitric oxide: a physiologic messenger. Ann Intern Med 120:227–37

    Article  PubMed  CAS  Google Scholar 

  39. Lübbert M, Kyereme J, Schöbel N, Beltrán L, Wetzel CH, Hatt H (2013) Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons. PLoS One 8:e77998. doi:10.1371/journal.pone.0077998

    Article  PubMed  PubMed Central  Google Scholar 

  40. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–5. doi:10.1038/nature05544

    Article  PubMed  CAS  Google Scholar 

  41. Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Muñoz-Cánoves P (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21. doi:10.1186/2044-5040-1-21

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D et al (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 104:13525–30. doi:10.1073/pnas.0705924104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Molkentin JD, Olson EN (1996) Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci U S A 93:9366–9373

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 464:425–58. doi:10.1007/s00424-012-1158-z

    Article  PubMed  CAS  Google Scholar 

  46. Nilius B, Prenen J, Owsianik G (2011) Irritating channels: the case of TRPA1. J Physiol 589:1543–9. doi:10.1113/jphysiol.2010.200717

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Nishida Y, Miyamori H, Thompson EW, Takino T, Endo Y, Sato H (2008) Activation of matrix metalloproteinase-2 (MMP-2) by membrane type 1 matrix metalloproteinase through an artificial receptor for proMMP-2 generates active MMP-2. Cancer Res 68:9096–104. doi:10.1158/0008-5472.CAN-08-2522

    Article  PubMed  CAS  Google Scholar 

  48. Okajima F (2013) Regulation of inflammation by extracellular acidification and proton-sensing GPCRs. Cell Signal 25:2263–2271. doi:10.1016/j.cellsig.2013.07.022

    Article  PubMed  CAS  Google Scholar 

  49. Paulsen G, Crameri R, Benestad HB, Fjeld JG, Mørkrid L, Hallén J, Raastad T (2010) Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc 42:75–85. doi:10.1249/MSS.0b013e3181ac7adb

    Article  PubMed  Google Scholar 

  50. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Philippou A, Halapas A, Maridaki M, Koutsilieris M (2007) Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy. J Musculoskelet Nueronal Interact 7:208–18

    CAS  Google Scholar 

  52. Przybylski RJ, Szigeti V, Davidheiser S, Kirby AC (1994) Calcium regulation of skeletal myogenesis. II. Extracellular and cell surface effects. Cell Calcium 15:132–42

    Article  PubMed  CAS  Google Scholar 

  53. Rigamonti E, Touvier T, Clementi E, Manfredi AA, Brunelli S, Rovere-Querini P (2013) Requirement of inducible nitric oxide synthase for skeletal muscle regeneration after acute damage. J Immunol 190:1767–77. doi:10.4049/jimmunol.1202903

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Roche J, Eberhardt MJ, Klinger AB, Stanslowsky N, Wegner F, Koppert W, Reeh PW, Lampert A, Fischer MJM et al (2013) The molecular basis for species-specific activation of human TRPA1 protein by protons involves poorly conserved residues within transmembrane domains 5 and 6. J Biol Chem 288:20280–20292. doi:10.1074/jbc.M113.479337

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rubinstein I, Abassi Z, Coleman R, Milman F, Winaver J, Better OS (1998) Involvement of nitric oxide system in experimental muscle crush injury. J Clin Invest 101:1325–33. doi:10.1172/JCI810

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S et al (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138:3647–56. doi:10.1242/dev.067587

    Article  PubMed  CAS  Google Scholar 

  57. Sheehan SM, Tatsumi R, Temm-Grove CJ, Allen RE (2000) HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23:239–45

    Article  PubMed  CAS  Google Scholar 

  58. Stern-Straeter J, Bonaterra GA, Hörmann K, Kinscherf R, Goessler UR (2009) Identification of valid reference genes during the differentiation of human myoblasts. BMC Mol Biol 10:66. doi:10.1186/1471-2199-10-66

    Article  PubMed  PubMed Central  Google Scholar 

  59. Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, Uchida K, Mori Y (2008) Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels 2:287–98

    Article  PubMed  Google Scholar 

  60. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–28. doi:10.1006/dbio.1997.8803

    Article  PubMed  CAS  Google Scholar 

  61. Tatsumi R, Liu X, Pulido A, Morales M, Sakata T, Dial S, Hattori A, Ikeuchi Y, Allen RE (2006) Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol 290:C1487–94. doi:10.1152/ajpcell.00513.2005

    Article  PubMed  CAS  Google Scholar 

  62. Tatsumi R, Wuollet AL, Tabata K, Nishimura S, Tabata S, Mizunoya W, Ikeuchi Y, Allen RE (2009) A role for calcium-calmodulin in regulating nitric oxide production during skeletal muscle satellite cell activation. Am J Physiol Cell Physiol 296:C922–9. doi:10.1152/ajpcell.00471.2008

    Article  PubMed  CAS  Google Scholar 

  63. Taylor-Clark TE, Undem BJ, Macglashan DW, Ghatta S, Carr MJ, McAlexander MA (2008) Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol 73:274–81. doi:10.1124/mol.107.040832

    Article  PubMed  CAS  Google Scholar 

  64. Vay L, Gu C, McNaughton PA (2012) The thermo-TRP ion channel family: properties and therapeutic implications. Br J Pharmacol 165:787–801. doi:10.1111/j.1476-5381.2011.01601.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Vilceanu D, Stucky CL (2010) TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PLoS One 5:e12177. doi:10.1371/journal.pone.0012177

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang YX, Rudnicki MA (2011) Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol 5:1–7. doi:10.1038/nrm3265

    Google Scholar 

  67. Yamada M, Sankoda Y, Tatsumi R, Mizunoya W, Ikeuchi Y, Sunagawa K, Allen RE (2008) Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int J Biochem Cell Biol 40:2183–91. doi:10.1016/j.biocel.2008.02.017

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Pyschny and Uta Müller for technical assistance and S. Kurtenbach and M. Lübbert for comments on the manuscript. We also thank F. Entschladen and the Institute for Immunology (Witten/Herdecke) for their support with the migration assays. We thank the Muscle Tissue Culture Collection MTCC for providing human myoblast cultures. The Muscle Tissue Culture Collection is part of the German network on muscular dystrophies (MD-NET) and the German network for mitochondrial disorders (mito-NET, project D2, 01GM1113A) funded by the German ministry of education and research (BMBF, Bonn, Germany). The Muscle Tissue Culture Collection is a partner of EuroBioBank (www.eurobiobank.org) and TREAT-NMD (www.treat-nmd.eu). We also thank the Sonderforschungsbereich 642 for their financial support.

Author contributions

Experiment design: MO, HH. Performed the experiments: MO, SO, MB, BK. Analyzed the data: MO, MB. Wrote the paper: MO, SO, HH.

Ethical standards

All experiments comply with the current laws of the Federal Republic of Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Osterloh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osterloh, M., Böhm, M., Kalbe, B. et al. Identification and functional characterization of TRPA1 in human myoblasts. Pflugers Arch - Eur J Physiol 468, 321–333 (2016). https://doi.org/10.1007/s00424-015-1729-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1729-x

Keywords

Navigation