Skip to main content
Log in

The biopsychology of salt hunger and sodium deficiency

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Sodium is a necessary dietary macromineral that tended to be sparsely distributed in mankind’s environment in the past. Evolutionary selection pressure shaped physiological mechanisms including hormonal systems and neural circuits that serve to promote sodium ingestion. Sodium deficiency triggers the activation of these hormonal systems and neural circuits to engage motivational processes that elicit a craving for salty substances and a state of reward when salty foods are consumed. Sodium deficiency also appears to be associated with aversive psychological states including anhedonia, impaired cognition, and fatigue. Under certain circumstances the psychological processes that promote salt intake can become powerful enough to cause “salt gluttony,” or salt intake far in excess of physiological need. The present review discusses three aspects of the biopsychology of salt hunger and sodium deficiency: (1) the psychological processes that promote salt intake during sodium deficiency, (2) the effects of sodium deficiency on mood and cognition, and (3) the sensitization of sodium appetite as a possible cause of salt gluttony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barelare B, Richter CP (1937) Increased sodium chloride appetite in pregnant rats. Am J Physiol 121(1):185

  2. Bates GP and Miller VS (2008) Sweat rate and sodium loss during work in the heat. J Occup Med Toxicol 3(4)

  3. Beauchamp GK et al (1990) Experimental sodium depletion and salt taste in normal human volunteers. Am J Clin Nutr 51(5):881–889

    CAS  PubMed  Google Scholar 

  4. Berridge KC, Robinson TE, Aldridge JW (2009) Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol 9(1):65–73

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Berridge KC, Schulkin J (1989) Palatability shift of a salt-associated incentive during sodium depletion. Q J Exp Psychol 41(2):121–138

    CAS  Google Scholar 

  6. Berridge KC et al (1984) Sodium depletion enhances salt palatability in rats. Behav Neurosci 98(4):652–660

    CAS  PubMed  Google Scholar 

  7. Bibbins-Domingo K et al (2010) Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med 362(7):590–599

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Bindra D (1959) Motivation: a systematic reinterpretation. The Ronald Press Company, New York

  9. Bolles RC (1975) Theory of motivation, Second Edition. Harper & Row, New York

  10. Bou-Holaigah I et al (1995) The relationship between neurally mediated hypotension and the chronic fatigue syndrome. JAMA 274(12):961–967

  11. Brockbank E (1929) Miners’ cramp. Br Med J 1(3549):65

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Brown AM (1980) Receptors under pressure. An update on baroreceptors. Circ Res 46(1):1–10

    CAS  PubMed  Google Scholar 

  13. Brown JE, Toma RB (1986) Taste changes during pregnancy. Am J Clin Nutr 43(3):414

    CAS  PubMed  Google Scholar 

  14. Brown IJ et al (2009) Salt intakes around the world: implications for public health. Int J Epidemiol 38(3):791–813

    PubMed  Google Scholar 

  15. Bryant RW et al (1980) Arousal of a specific and persistent sodium appetite in the rat with continuous intracerebroventricular infusion of angiotensin II. J Physiol 301(1):365

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Campbell WB, Brooks SN, Pettinger WA (1974) Angiotensin II- and angiotensin III-induced aldosterone release vivo in the rat. Science 184(4140):994–996

  17. Carlezon WA, Chartoff EH (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc 2(11):2987–2995

    CAS  PubMed  Google Scholar 

  18. Center for Disease Control (2014) Chronic fatigue syndrome. [cited 2014; Available from: http://www.cdc.gov/cfs/]

  19. Clark JJ, Bernstein IL (2006) Sensitization of salt appetite is associated with increased “wanting” but not “liking” of a salt reward in the sodium-deplete rat. Behav Neurosci 120(1):206

    PubMed  Google Scholar 

  20. Conover KL, Woodside B, Shizgal P (1994) Effects of sodium depletion on competition and summation between rewarding effects of salt and lateral hypothalamic stimulation in the rat. Behav Neurosci 108(3):549

    CAS  PubMed  Google Scholar 

  21. Contreras RJ (1977) Changes in gustatory nerve discharges with sodium deficiency: a single unit analysis. Brain Res 121(2):373–378

    CAS  PubMed  Google Scholar 

  22. Contreras RJ, Frank M (1979) Sodium deprivation alters neural responses to gustatory stimuli. J Gen Physiol 73(5):569–594

    CAS  PubMed  Google Scholar 

  23. Contreras RJ, Stetson PW (1981) Changes in salt intake lesions of the area postrema and the nucleus of the solitary tract in rats. Brain Res 211(2):355–366

    CAS  PubMed  Google Scholar 

  24. Cotman CW, Monaghan DT, Ganong AH (1988) Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci 11:61–80

    CAS  PubMed  Google Scholar 

  25. Crystal SR, Bernstein IL (1995) Morning sickness: impact on offspring salt preference. Appetite 25(3):231–240

    CAS  PubMed  Google Scholar 

  26. Dahl LK (1961) Possible role of chronic excess salt consumption in the pathogenesis of essential hypertension. Am J Cardiol 8(4):571–575

    CAS  PubMed  Google Scholar 

  27. Dahl LK (1972) Salt and hypertension. Am J Clin Nutr 25(2):231–244

    CAS  PubMed  Google Scholar 

  28. Dahl LK, Love RA (1957) Etiological role of sodium chloride intake in essential hypertension in humans. J Am Med Assoc 164(4):397

    CAS  PubMed  Google Scholar 

  29. De Gobbi JIF et al (2008) Right atrial stretch alters fore- and hind-brain expression of c-fos and inhibits the rapid onset of salt appetite. J Physiol 586(15):3719–3729

    PubMed Central  PubMed  Google Scholar 

  30. De Luca LA et al (2010) Water deprivation-induced sodium appetite. Physiol Behav 100(5):535–544

    PubMed  Google Scholar 

  31. Denton DA (1957) The study of sheep with permanent unilateral parotid fistulae. Q J Exp Physiol Cognate Med Sci 42(1):72–95

    CAS  Google Scholar 

  32. Denton DA (1982) The hunger for salt: an anthropological, physiological, and medical analysis. Springer, New York

    Google Scholar 

  33. Denton DA et al (1984) Stress, ACTH, salt intake and high blood pressure. Clin Exp Hypertens 6(1–2):403–415

    CAS  Google Scholar 

  34. Epstein AN (1982) Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides 3(3):493–494

    CAS  PubMed  Google Scholar 

  35. Epstein AN (1991) Neurohormonal control of salt intake in the rat. Brain Res Bull 27(3–4):315–320

    CAS  PubMed  Google Scholar 

  36. Epstein AN (1991) Thirst and salt intake: a personal review and some suggestions. In D. Ramsay & D. Booth (Eds.), Thirst (pp. 481-501): Springer London

  37. Falk JL (1965) Water intake and NaCl appetite in sodium depletion. Psychol Rep 16:315–325

    CAS  PubMed  Google Scholar 

  38. Falk JL (1966) Serial sodium depletion and NaCl solution intake. Physiol Behav 1(1):75–77

    CAS  Google Scholar 

  39. Faure A et al (2008) Mesolimbic dopamine in desire and dread: enabling motivation to be generated by localized glutamate disruptions in nucleus accumbens. J Neurosci 28(28):7184–7192

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Ferguson AV, Washburn DL (1998) Angiotensin II: a peptidergic neurotransmitter in central autonomic pathways. Prog Neurobiol 54(2):169–192

    CAS  PubMed  Google Scholar 

  41. Fessler DMT (2003) An evolutionary explanation of the plasticity of salt preferences: prophylaxis against sudden dehydration. Med Hypotheses 61(3):412–415

    CAS  PubMed  Google Scholar 

  42. Fitts DA, Masson DB (1990) Preoptic angiotensin and salt appetite. Behav Neurosci 104(4):643–650

    CAS  PubMed  Google Scholar 

  43. Fitzsimons JT (1979) The physiology of thirst and sodium appetite. Monographs of the Physiological Society no 35. Cambridge University Press, Cambridge

  44. Fluharty SJ, Epstein AN (1983) Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav Neurosci 97(5):746

    CAS  PubMed  Google Scholar 

  45. Frankmann SP et al (1986) A single experience with hyperoncotic colloid dialysis persistently alters water and sodium intake. In: The physiology of thirst and sodium appetite. NATO ASI series. Plenum, New York

  46. Fregly MJ, Rowland NE (1985) Role of renin-angiotensin-aldosterone system in NaCl appetite of rats. Am J Physiol Regul Integr Comp Physiol 248(1):R1–R11

    CAS  Google Scholar 

  47. Ganten D, Hutchinson JS, Schelling P (1975) The intrinsic brain iso-renin--angiotensin system in the rat: its possible role in central mechanisms of blood pressure regulation. Clin Sci Mol Med Suppl 2:265s–268s

    CAS  PubMed  Google Scholar 

  48. Glanzman DL (2010) Common mechanisms of synaptic plasticity in vertebrates and invertebrates. Curr Biol 20(1):R31–R36

    CAS  PubMed  Google Scholar 

  49. Gomez-Sanchez CE et al (1997) Aldosterone biosynthesis in the rat brain. Endocrinology 138(8):3369

    CAS  PubMed  Google Scholar 

  50. Gomez-Sanchez EP et al (2005) Is aldosterone synthesized within the rat brain? Am J Physiol Endocrinol Metab 288(2):E342–E346

    CAS  PubMed  Google Scholar 

  51. Grill HJ, Norgren R (1978) The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res 143(2):263–279

    CAS  PubMed  Google Scholar 

  52. Grippo AJ et al (2006) Reduced hedonic behavior and altered cardiovascular function induced by mild sodium depletion in rats. Behav Neurosci 120(5):1133

    CAS  PubMed  Google Scholar 

  53. Heale V, Harley C (1990) MK-801 and AP5 impair acquisition, but not retention, of the Morris milk maze. Pharmacol Biochem Behav 36(1):145–149

    CAS  PubMed  Google Scholar 

  54. Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  55. Henry JP (1988) Stress, salt and hypertension. Soc Sci Med 26(3):293–302

    CAS  PubMed  Google Scholar 

  56. Hong S et al (2011) Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci Off J Soc Neurosci 31(32):11457–11471

    CAS  Google Scholar 

  57. Hurley SW, Johnson AK (2013) Dissociation of thirst and sodium appetite in the furo/cap model of extracellular dehydration and a role for N-methyl-D-aspartate receptors in the sensitization of sodium appetite. Behav Neurosci 127(6):890–898

    CAS  PubMed  Google Scholar 

  58. Hurley SW, Johnson AK (2014) The role of the lateral hypothalamus and orexin in ingestive behavior: a model for the translation of past experience and sensed deficits into motivated behaviors. Front Syst Neurosci 8:216

    PubMed Central  PubMed  Google Scholar 

  59. Hurley SW, Thunhorst RL, Johnson AK (2013) Sodium appetite sensitization. In: De Luca LA, Johnson AK, Menani JV (eds) Neurobiology of body fluid homeostasis: transduction and integration (series IV: frontiers in neuroscience). Taylor and Francis, Boca Raton, pp 279–301

    Google Scholar 

  60. Hurley SW et al (2014) Sensitization of sodium appetite: evidence for sustained molecular changes in the lamina terminalis. Am J Physiol Regul Integr Comp Physiol 307(12):R1405–R1412

    CAS  PubMed  Google Scholar 

  61. Jacobs KM, Mark GP, Scott TR (1988) Taste responses in the nucleus tractus solitarius of sodium-deprived rats. J Physiol 406(1):393

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Jalowiec JE (1974) Sodium appetite elicited by furosemide: effects of differential dietary maintenance. Behav Biol 10(3):313–327

    CAS  PubMed  Google Scholar 

  63. Jhou TC et al (2009) The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61(5):786–800

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Johnson AK (2007) The sensory psychobiology of thirst and salt appetite. Med Sci Sports Exerc 39(8):1388–1400

    PubMed  Google Scholar 

  65. Johnson AK, Cunningham JT, Thunhorst RL (1996) Integrative role of the lamina terminalis in the regulation of cardiovascular and body fluid homeostasis. Clin Exp Pharmacol Physiol 23(2):183–191

    CAS  PubMed  Google Scholar 

  66. Johnson AK, Gross PM (1993) Sensory circumventricular organs and brain homeostatic pathways. FASEB J Off Publ Fed Am Soc Exp Biol 7(8):678–686

    CAS  Google Scholar 

  67. Johnson AK, Thunhorst RL (2007) The neuroendocrinology, neurochemistry and molecular biology of thirst and salt appetite. Handb Neurochem Mol Neurobiol Behav Neurochem Neuroendocrinol Mol Neurobiol 3:641–687

    Google Scholar 

  68. Jorm AF (2001) Association of hypotension with positive and negative affect and depressive symptoms in the elderly. Br J Psychiatry 178(6):553–555

    CAS  PubMed  Google Scholar 

  69. Kalivas PW, Alesdatter JE (1993) Involvement of N-methyl-D-aspartate receptor stimulation in the ventral tegmental area and amygdala in behavioral sensitization to cocaine. J Pharmacol Exp Ther 267(1):486–495

    CAS  PubMed  Google Scholar 

  70. Kaunitz H (1956) Causes and consequences of salt consumption. Nature 178(4543):1141–1144

    CAS  PubMed  Google Scholar 

  71. Keil LC, Summy-Long J, Severs WB (1975) Release of vasopressin by angiotensin II. Endocrinology 96(4):1063–1065

    CAS  PubMed  Google Scholar 

  72. Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27(8):765–776

    PubMed  Google Scholar 

  73. Kleinewietfeld M et al (2013) Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496(7446):518–522

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Lee CT et al (2006) Serum- and glucocorticoid-inducible kinase (SGK) is a target of the MAPK/ERK signaling pathway that mediates memory formation in rats. Eur J Neurosci 23(5):1311–1320

    PubMed  Google Scholar 

  75. Leshem M (1998) Salt preference in adolescence is predicted by common prenatal and infantile mineralofluid loss. Physiol Behav 63(4):699–704

    CAS  PubMed  Google Scholar 

  76. Leshem M (2009) Biobehavior of the human love of salt. Neurosci Biobehav Rev 33(1):1–17

    CAS  PubMed  Google Scholar 

  77. Leshem M (2011) Low dietary sodium is anxiogenic in rats. Physiol Behav 103(5):453–458

    CAS  PubMed  Google Scholar 

  78. Leshem M (2013) The human penchant for deranged salt balance. In: De Luca LA, Johnson AK, Menani JV (eds) Neurobiology of body fluid homeostasis: transduction and integration (series IV: frontiers in neuroscience). Taylor and Francis, Boca Raton, p 1–22

  79. Leshem M, Abutbul A, Eilon R (1999) Exercise increases the preference for salt in humans. Appetite 32(2):251–260

    CAS  PubMed  Google Scholar 

  80. Liedtke WB et al (2011) Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite. Proc Natl Acad Sci 108(30):12509

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Lind RW, Johnson AK (1982) Subfornical organ-median preoptic connections and drinking and pressor responses to angiotensin II. J Neurosci Off J Soc Neurosci 2(8):1043–1051

    CAS  Google Scholar 

  82. Loriaux AL, Roitman JD, Roitman MF (2011) Nucleus accumbens shell, but not core, tracks motivational value of salt. J Neurophysiol 106(3):1537–1544

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Lucas LR, Grillo CA, McEwen BS (2003) Involvement of mesolimbic structures in short-term sodium depletion: in situ hybridization and ligand-binding analyses. Neuroendocrinology 77(6):406–415

    CAS  PubMed  Google Scholar 

  84. Lucas LR, Grillo CA, McEwen BS (2007) Salt appetite in sodium-depleted or sodium-replete conditions: possible role of opioid receptors. Neuroendocrinology 85(3):139–147

    CAS  PubMed  Google Scholar 

  85. Lucas LR, Pompei P, McEwen BS (2000) Salt appetite in salt-replete rats: involvement of mesolimbic structures in deoxycorticosterone-induced salt craving behavior. Neuroendocrinology 71(6):386–395

    CAS  PubMed  Google Scholar 

  86. MacGregor G, De Wardener HE (1998) Salt, diet and health. Cambridge University Press, Cambridge

  87. Mameli M et al (2009) Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci 12(8):1036–1041

    CAS  PubMed  Google Scholar 

  88. McCance RA (1936) Experimental sodium chloride deficiency in man. Proc R Soc Lond B Biol Sci 119(814):245–268

    CAS  Google Scholar 

  89. McEwen OR (1935) Salt loss as a common cause of ill-health in hot climates. Lancet 225(5826):1015

    Google Scholar 

  90. McKinley MJ (2013) Adaptive appetites for salted and unsalted food in rats: differential effects of sodium depletion, DOCA, and dehydration. Am J Physiol Regul Integr Comp Physiol 304(12):R1149–R1160

    CAS  PubMed  Google Scholar 

  91. McKinley MJ et al (1999) The lamina terminalis and its role in fluid and electrolyte homeostasis. J Clin Neurosci Off J Neurosurg Soc Australas 6(4):289–301

    Google Scholar 

  92. Menani JV, Thunhorst RL, Johnson AK (1996) Lateral parabrachial nucleus and serotonergic mechanisms in the control of salt appetite in rats. Am J Physiol Regul Integr Comp Physiol 270(1):R162

    CAS  Google Scholar 

  93. Mifflin SW, Felder RB (1990) Synaptic mechanisms regulating cardiovascular afferent inputs to solitary tract nucleus. Am J Physiol 259(3 Pt 2):H653–H661

    CAS  PubMed  Google Scholar 

  94. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14(2):69–97

    CAS  PubMed  Google Scholar 

  95. Morris MJ, Na ES, Johnson AK (2008) Salt craving: the psychobiology of pathogenic sodium intake. Physiol Behav 94(5):709–721

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Morris MJ, Na ES, Johnson AK (2010) Mineralocorticoid receptor antagonism prevents hedonic deficits induced by a chronic sodium appetite. Behav Neurosci 124(2):211

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Morris MJ et al (2006) The effects of deoxycorticosterone-induced sodium appetite on hedonic behaviors in the rat. Behav Neurosci 120(3):571–578

    CAS  PubMed  Google Scholar 

  98. Moss KN (1923) Some effects of high air temperatures and muscular exertion upon colliers. Proc R Soc Lond B Containing Papers Biol Charact 95:181–200

    CAS  Google Scholar 

  99. Mozaffarian D et al (2014) Global sodium consumption and death from cardiovascular causes. N Engl J Med 371(7):624–634

    PubMed  Google Scholar 

  100. Na ES, Morris MJ, Johnson AK (2012) Opioid mechanisms that mediate the palatability of and appetite for salt in sodium replete and deficient states. Physiol Behav 106:164–170

    CAS  PubMed  Google Scholar 

  101. Na ES et al (2007) The neural substrates of enhanced salt appetite after repeated sodium depletions. Brain Res 1171:104–110

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Naray-Fejes-Toth A, Fejes-Toth G (2000) The sgk, an aldosterone-induced gene in mineralocorticoid target cells, regulates the epithelial sodium channel. Kidney Int 57(4):1290–1294

    CAS  PubMed  Google Scholar 

  103. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2(2):119–128

    CAS  PubMed  Google Scholar 

  104. Nestler EJ, Barrot M, Self DW (2001) DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci U S A 98(20):11042–11046

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13(10):1161–1169

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419

    CAS  PubMed  Google Scholar 

  107. Papp M, Willner P, Muscat R (1991) An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology 104(2):255–259

    CAS  PubMed  Google Scholar 

  108. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

  109. Peart WS (1965) The renin-angiotensin system. Pharmacol Rev 17(2):143–182

    CAS  PubMed  Google Scholar 

  110. Peciña S, Berridge KC (2000) Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res 863(1–2):71–86

    PubMed  Google Scholar 

  111. Pereira DTB, Menani JV, De Luca LA Jr (2010) FURO/CAP: a protocol for sodium intake sensitization. Physiol Behav 99(4):472–481

    CAS  PubMed  Google Scholar 

  112. Phillips MI (1987) Functions of angiotensin in the central nervous system. Annu Rev Physiol 49:413–435

    CAS  PubMed  Google Scholar 

  113. Potts WTW, Parry G (1964) Osmotic and ionic regulation in animals. In: International series of monographs on pure and applied biology. Division: Zoology, vol 19. Pergamon Press, Oxford, p 423

    Google Scholar 

  114. Richter CP (1936) Increased salt appetite in adrenalectomized rats. Am J Physiol Leg Content 115(1):155–161

    CAS  Google Scholar 

  115. Robinson MJF, Berridge KC (2013) Instant transformation of learned repulsion into motivational “wanting”. Curr Biol 23(4):282–289

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Roitman MF, Wheeler RA, Carelli RM (2005) Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron 45(4):587–597

    CAS  PubMed  Google Scholar 

  117. Roitman MF et al (1997) Dopamine and sodium appetite: antagonists suppress sham drinking of NaCl solutions in the rat. Behav Neurosci 111(3):606

    CAS  PubMed  Google Scholar 

  118. Roitman MF et al (2002) Induction of a salt appetite alters dendritic morphology in nucleus accumbens and sensitizes rats to amphetamine. J Neurosci 22(11):RC225

    PubMed  Google Scholar 

  119. Roitman MF et al (2008) Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat Neurosci 11(12):1376

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Ruhf AA, Starbuck EM, Fitts DA (2001) Effects of SFO lesions on salt appetite during multiple sodium depletions. Physiol Behav 74(4):629–636

    CAS  PubMed  Google Scholar 

  121. Sakai RR, Nicolaidis S, Epstein AN (1986) Salt appetite is suppressed by interference with angiotensin II and aldosterone. Am J Physiol Regul Integr Comp Physiol 251(4):R762–R768

    CAS  Google Scholar 

  122. Sakai RR et al (1987) Salt appetite is enhanced by one prior episode of sodium depletion in the rat. Behav Neurosci 101(5):724

    CAS  PubMed  Google Scholar 

  123. Sakai RR et al (1989) Prior episodes of sodium depletion increase the need-free sodium intake of the rat. Behav Neurosci 103(1):186

    CAS  PubMed  Google Scholar 

  124. Schulkin J (1986) The evolution and expression of salt appetite. In: De Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum, New York, pp 491–496

    Google Scholar 

  125. Seymour D et al (1980) Acute confusional states and dementia in the elderly: the role of dehydration/volume depletion, physical illness and age. Age Ageing 9(3):137–146

    CAS  PubMed  Google Scholar 

  126. Smith KS et al (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196(2):155–167

    PubMed Central  PubMed  Google Scholar 

  127. Takamata A et al (1994) Sodium appetite, thirst, and body fluid regulation in humans during rehydration without sodium replacement. Am J Physiol Regul Integr Comp Physiol 266(5):R1493–R1502

    CAS  Google Scholar 

  128. Tindell AJ et al (2006) Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J Neurophysiol 96(5):2399–2409

    PubMed  Google Scholar 

  129. Trujillo KA, Akil H (1991) Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251(4989):85–87

    CAS  PubMed  Google Scholar 

  130. Watson SJ et al (1982) Dynorphin and vasopressin: common localization in magnocellular neurons. Science 216(4541):85–87

  131. Weinberger MH et al (2001) Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37(2 Pt 2):429–432

    CAS  PubMed  Google Scholar 

  132. Wilkins L, Richter CP (1940) A great craving for salt by a child with cortico-adrenal insufficiency. J Am Med Assoc 114(10):866–868

    Google Scholar 

  133. Yeomans MR, Blundell JE, Leshem M (2004) Palatability: response to nutritional need or need-free stimulation of appetite? Br J Nutr 92(Suppl 1):S3–S14

    CAS  PubMed  Google Scholar 

  134. Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24(1):1071–1089

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Marilyn Dennis for comments on the manuscript and reviewers for the helpful comments on earlier manuscript submissions. This research was supported by National Institutes of Health grants HL14388, HL098207, and MH08241.

Conflict of interest

The authors have no disclosures to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Kim Johnson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurley, S.W., Johnson, A.K. The biopsychology of salt hunger and sodium deficiency. Pflugers Arch - Eur J Physiol 467, 445–456 (2015). https://doi.org/10.1007/s00424-014-1676-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1676-y

Keywords

Navigation