Skip to main content
Log in

Effects of salicylate on sound-evoked outer hair cell stereocilia deflections

  • Sensory physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Hearing depends on sound-evoked deflections of the stereocilia that protrude from the sensory hair cells in the inner ear. Although sound provides an important force driving stereocilia, forces generated through mechanically sensitive ion channels and through the motor protein prestin have been shown to influence stereocilia motion in solitary hair cells. While a possible influence of prestin on mechanically sensitive ion channels has not been systematically investigated, a decrease in transducer currents is evident in solitary hair cells when prestin is blocked with salicylate, raising the question of whether a reduced prestin activity or salicylate itself affected the mechanotransduction apparatus. We used two- and three-dimensional time-resolved confocal imaging to visualize outer hair cell stereocilia during sound stimulation in the apical turn of cochlear explant preparations from the guinea pig. Surprisingly, following application of salicylate, outer hair cell stereocilia deflections increased, while cochlear microphonic potentials decreased. However, when prestin activity was altered with the chloride ionophore tributyltin, both the cochlear microphonic potential and the stereocilia deflection amplitude decreased. Neither positive nor negative current stimulation abolished the bundle movements in the presence of salicylate, indicating that the observed effects did not depend on the endocochlear potential. These data suggest that salicylate may alter the mechanical properties of stereocilia, decreasing their bending stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196, PMID: 3966153

    Article  CAS  PubMed  Google Scholar 

  2. Brownell WE, Jacob S, Hakizimana P, Ulfendahl M, Fridberger A (2011) Membrane cholesterol modulates cochlear electromechanics. Eur J Physiol 461:677–686. doi:10.1007/s00424-011-0942-5

    Article  CAS  Google Scholar 

  3. Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155. doi:10.1038/nn1385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3:962–976, PMID: 6601694

    CAS  PubMed  Google Scholar 

  5. Dallos P, Santos-Sacchi J, Flock A (1982) Intracellular recordings from cochlear outer hair cells. Science 218:582–584, PMID: 7123260

    Article  CAS  PubMed  Google Scholar 

  6. Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X, Cheng WHY, Sengupta S, He DZZ, Zuo J (2008) Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58:333–339. doi:10.1016/j.neuron.2008.02.028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Flock Å, Flock B, Fridberger A, Jäger W (1997) Methods for integrating fluorimetry in the study of hearing organ structure and function. Hear Res 106:29–38, PMID: 9112105

    Article  CAS  PubMed  Google Scholar 

  8. Fridberger A, Tomo I, Ulfendahl M, Boutet de Monvel J (2006) Imaging hair cell transduction at the speed of sound: dynamic behavior of mammalian stereocilia. Proc Natl Acad Sci U S A 103:1918–1923. doi:10.1073/pnas.0507231103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fridberger A, Widengren J, Boutet de Monvel J (2004) Measuring hearing organ vibration patterns with confocal microscopy and optical flow. Biophys J 86:535–543. doi:10.1016/S0006-3495(04)74132-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Furness DN, Mahendrasingam S, Ohashi M, Fettiplace R, Hackney CM (2008) The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane. J Neurosci 28:6342–6353. doi:10.1523/JNEUROSCI. 1154-08.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gorbunov D, Sturlese M, Nies F, Kluge M, Bellanda M, Battistutta R, Oliver D (2014) Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters. Nat Commun 5:3622. doi:10.1038/ncomms4622

    Article  PubMed Central  PubMed  Google Scholar 

  12. Grillet N, Xiong W, Reynolds A, Kazmierczak P, Sato T, Lillo C, Dumont RA, Hintermann E, Sczaniecka A, Schwander M, Williams D, Kachar B, Gillespie PG, Muller U (2009) Harmonin mutations cause mechanotransduction defects in cochlear hair cells. Neuron 62:375–387. doi:10.1016/j.neuron.2009.04.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hakizimana P, Brownell WE, Jacob S, Fridberger A (2012) Sound-induced length changes in outer hair cell stereocilia. Nat Commun 3:1094. doi:10.1038/ncomms2100

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci U S A 74:2407–2411, PMID: 329282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jacob S, Pienkowski M, Fridberger A (2011) The endocochlear potential alters cochlear micromechanics. Biophys J 100:2586–2594. doi:10.1016/j.bpj.2011.05.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Jacob S, Tomo I, Fridberger A, de Monvel JB, Ulfendahl M (2007) Rapid confocal imaging for measuring sound-induced motion of the hearing organ in the apical region. J Biomed Opt 12:021005. doi:10.1117/1.2718568

    Article  PubMed  Google Scholar 

  17. Jia S, He DZZ (2005) Motility-associated hair-bundle motion in mammalian outer hair cells. Nat Neurosci 8:1028–1034. doi:10.1038/nn1509

    Article  CAS  PubMed  Google Scholar 

  18. Kennedy HJ, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433:880–883. doi:10.1038/nature03367

    Article  CAS  PubMed  Google Scholar 

  19. Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6:832–836. doi:10.1038/nn1089

    Article  CAS  PubMed  Google Scholar 

  20. Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2006) Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms. J Neurosci 26:2757–2766. doi:10.1523/JNEUROSCI. 3808-05.2006

    Article  CAS  PubMed  Google Scholar 

  21. Lue AJ, Brownell WE (1999) Salicylate induced changes in outer hair cell lateral wall stiffness. Hear Res 135:163–168, PMID: 10491964

    Article  CAS  PubMed  Google Scholar 

  22. Martin P, Hudspeth AJ (1999) Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli. Proc Natl Acad Sci U S A 96:14306–14311, PMID: 10588701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Meaud J, Grosh K (2011) Coupling active hair bundle mechanics, fast adaptation, and somatic motility in a cochlear model. Biophys J 100:2576–2585. doi:10.1016/j.bpj.2011.04.049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332, PMID: 8613799

    CAS  PubMed  Google Scholar 

  25. Russell IJ, Schauz C (1995) Salicylate ototoxicity: effects on the stiffness and electromotility of outer hair cells isolated from the guinea pig cochlea. Aud Neurosci 1:309–319

    CAS  Google Scholar 

  26. Santos-Sacchi J, Song L, Zheng J, Nuttall AL (2006) Control of mammalian cochlear amplification by chloride anions. J Neurosci 26:3992–3998. doi:10.1523/JNEUROSCI. 4548-05.2006

    Article  CAS  PubMed  Google Scholar 

  27. Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol 111:707–718, PMID: 1950533

    Article  CAS  PubMed  Google Scholar 

  28. Shehata-Dieler WE, Richter CP, Dieler R, Klinke R (1994) Effects of endolymphatic and perilymphatic application of salicylate in the pigeon. I: single fiber activity and cochlear potentials. Hear Res 74:77–84

    Article  CAS  PubMed  Google Scholar 

  29. Song L, Seeger A, Santos-Sacchi J (2005) On membrane motor activity and chloride flux in the outer hair cell: lessons learned from the environmental toxin tributyltin. Biophys J 88:2350–2362. doi:10.1529/biophysj.104.053579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ulfendahl M, Khanna SM, Fridberger A, Flock A, Flock B, Jäger W (1996) Mechanical response characteristics of the hearing organ in the low-frequency regions of the cochlea. J Neurophysiol 76:3850–3862, PMID: 8985883

    CAS  PubMed  Google Scholar 

  31. Verpy E, Weil D, Leibovici M, Goodyear RJ, Hamard G, Houdon C, Lefèvre GM, Hardelin J-P, Richardson GP, Avan P, Petit C (2008) Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 456:255–258. doi:10.1038/nature07380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Von Tiedemann M, Fridberger A, Ulfendahl M, de Monvel JB (2010) Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns. J Biomed Opt 15:056012. doi:10.1117/1.3494564

    Article  Google Scholar 

  33. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155. doi:10.1038/35012009

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Y, Raphael RM (2005) Effect of salicylate on the elasticity, bending stiffness, and strength of SOPC membranes. Biophys J 89:1789–1801. doi:10.1529/biophysj.104.054510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Swedish Research Council grant K2011-63X-14061-11-3, the Swedish Council for Working Life and Social Research (grant 2006–1526), Wallenberg foundations, Torsten Söderberg foundation, Tysta Skolan Foundation, Hörselskadades Riksförbund (A.F.) and Wenner-Gren foundations (P.H.).

Conflict of interest statement

The authors report no conflicts of interest relevant to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Fridberger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(MPG 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakizimana, P., Fridberger, A. Effects of salicylate on sound-evoked outer hair cell stereocilia deflections. Pflugers Arch - Eur J Physiol 467, 2021–2029 (2015). https://doi.org/10.1007/s00424-014-1646-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1646-4

Keywords

Navigation