Skip to main content
Log in

The differential contribution of GluN1 and GluN2 to the gating operation of the NMDA receptor channel

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The Ν-methyl-d-aspartate (NMDA) receptor channel is an obligatory heterotetramer formed by two GluN1 and two GluN2 subunits. However, the differential contribution of the two different subunits to channel operation is not clear. We found that the apparent affinity of glycine to GluN1 (K gly ∼ 0.6 μM) is much higher than NMDA or glutamate to GluN2 (K NMDA ∼ 36 μM, K glu ∼ 4.8 μM). The binding rate constant (derived from the linear regression of the apparent macroscopic binding rates) of glycine to GluN1 (∼9.8 × 106 M−1 s−1), however, is only slightly faster than NMDA to GluN2 (∼4.1 × 106 M−1 s−1). Accordingly, the apparent unbinding rates of glycine from activated GluN1 (time constant ∼2 s) are much slower than NMDA from activated GluN2 (time constant ∼70 ms). Moreover, the decay of NMDA currents upon wash-off of both glycine and NMDA seems to follow the course of NMDA rather than glycine unbinding. But if only glycine is washed off, the current decay is much slower, apparently following the course of glycine unbinding. The apparent binding rate of glycine to the fully deactivated channel, in the absence of NMDA, is roughly the same as that measured with co-application of both ligands, whereas the apparent binding rate of NMDA to the fully deactivated channel in the absence of glycine is markedly slower. In this regard, it is interesting that the seventh residue in the highly conserved SYTANLAAF motif (A7) in GluN1 and GluN2 are so close that they may interact with each other to control the dimension of the external pore mouth. Moreover, specific mutations involving A7 in GluN1 but not in GluN2 result in channels showing markedly enhanced affinity to both glycine and NMDA and readily activated by only NMDA, as if the channel is already partially activated. We conclude that GluN2 is most likely directly responsible for the activation gate of the NMDA channel, whereas GluN1 assumes a role of more global control, especially on the gating conformational changes in GluN2. Structurally, this intersubunit regulatory interaction seems to involve the SYTANLAAF motif, especially the A7 residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

DCKA:

5,7-Dichlorokynurenic acid

DMSO:

Dimethyl sulfoxide

MTS:

Methanethiosulfonate

MTSEA:

MTS-ethylammonium

MTSET:

MTS-ethyltrimethylammonium

NMDA:

Ν-methyl-d-aspartate

TAA:

Tetraalkylammonium

TPA:

Tetrapropylammonium

TBA:

Tetrabutylammonium

TpentA:

Tetrapentylammonium

ThexylA:

Tetrahexylammonium

TheptylA:

Tetraheptylammonium

TOA:

Tetraoctylammonium

References

  1. Anson LC, Chen PE, Wyllie DJ, Colquhoun D, Schoepfer R (1998) Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J Neurosci 18(2):581–589

    CAS  PubMed  Google Scholar 

  2. Ascher P (1990) Measuring and controlling the extracellular glycine concentration at the NMDA receptor level. Adv Exp Med Biol 268:13–16

    Article  CAS  PubMed  Google Scholar 

  3. Benveniste M, Clements J, Vyklicky L Jr, Mayer ML (1990) A kinetic analysis of the modulation of N-methyl-d-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J Physiol 428:333–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Benveniste M, Mayer ML (1991) Kinetic-analysis of antagonist action at N-methyl-d-Aspartic acid receptors—2 binding-Sites each for glutamate and glycine. Biophys J 59(3):560–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Benveniste M, Mienville JM, Sernagor E, Mayer ML (1990) Concentration-jump experiments with NMDA antagonists in mouse cultured hippocampal neurons. J Neurophysiol 63(6):1373–1384

    CAS  PubMed  Google Scholar 

  6. Berger AJ, Dieudonne S, Ascher P (1998) Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol 80(6):3336–3340

    CAS  PubMed  Google Scholar 

  7. Blanke ML, VanDongen AM (2008) The NR1 M3 domain mediates allosteric coupling in the N-methyl-d-aspartate receptor. Mol Pharmacol 74(2):454–465. doi:10.1124/mol.107.044115

    Article  CAS  PubMed  Google Scholar 

  8. Boulter J, Hollmann M, O’Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249(4972):1033–1037

    Article  CAS  PubMed  Google Scholar 

  9. Carter PJ, Winter G, Wilkinson AJ, Fersht AR (1984) The use of double mutants to detect structural-changes in the active-site of the tyrosyl-transfer RNA synthetase (Bacillus stearothermophilus). Cell 38(3):835–840

    Article  CAS  PubMed  Google Scholar 

  10. Chang HR, Kuo CC (2007) Characterization of the gating conformational changes in the felbamate binding site in NMDA channels. Biophys J 93(2):456–466. doi:10.1529/biophysj.106.098095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chang HR, Kuo CC (2008) The activation gate and gating mechanism of the NMDA receptor. J Neurosci 28(7):1546–1556. doi:10.1523/JNEUROSCI. 3485-07.2008

    Article  CAS  PubMed  Google Scholar 

  12. Chen GQ, Cui C, Mayer ML, Gouaux E (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402(6763):817–821. doi:10.1038/45568

    Article  CAS  PubMed  Google Scholar 

  13. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  14. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

    Article  CAS  PubMed  Google Scholar 

  15. Furukawa H, Gouaux E (2003) Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J 22(12):2873–2885. doi:10.1093/emboj/cdg303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438(7065):185–192. doi:10.1038/nature04089

    Article  CAS  PubMed  Google Scholar 

  17. Hackos DH, Chang TH, Swartz KJ (2002) Scanning the intracellular S6 activation gate in the shaker K+ channel. J Gen Physiol 119(6):521–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hidalgo P, MacKinnon R (1995) Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science 268(5208):307–310

    Article  CAS  PubMed  Google Scholar 

  19. Imamura Y, Ma CL, Pabba M, Bergeron R (2008) Sustained saturating level of glycine induces changes in NR2B-containing-NMDA receptor localization in the CA1 region of the hippocampus. J Neurochem 105(6):2454–2465. doi:10.1111/j.1471-4159.2008.05324.x

    Article  CAS  PubMed  Google Scholar 

  20. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417(6888):515–522. doi:10.1038/417515a

    Article  CAS  PubMed  Google Scholar 

  21. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531. doi:10.1038/325529a0

    Article  CAS  PubMed  Google Scholar 

  22. Jones KS, VanDongen HMA, VanDongen AMJ (2002) The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J Neurosci 22(6):2044–2053

    CAS  PubMed  Google Scholar 

  23. Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344(6187):992–997. doi:10.1126/science.1251915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kashiwagi K, Masuko T, Nguyen CD, Kuno T, Tanaka I, Igarashi K, Williams K (2002) Channel blockers acting at N-methyl-d-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore. Mol Pharmacol 61(3):533–545

    Article  CAS  PubMed  Google Scholar 

  25. Kitaguchi T, Sukhareva M, Swartz KJ (2004) Stabilizing the closed S6 gate in the Shaker Kv channel through modification of a hydrophobic seal. J Gen Physiol 124(4):319–332. doi:10.1085/jgp.200409098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kohda K, Wang Y, Yuzaki M (2000) Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat Neurosci 3(4):315–322. doi:10.1038/73877

    Article  CAS  PubMed  Google Scholar 

  27. Kuner T, Seeburg PH, Guy HR (2003) A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci 26(1):27–32

    Article  CAS  PubMed  Google Scholar 

  28. Kuner T, Wollmuth LP, Karlin A, Seeburg PH, Sakmann B (1996) Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17(2):343–352

    Article  CAS  PubMed  Google Scholar 

  29. Kuo CC, Lin BJ, Chang HR, Hsieh CP (2004) Use-dependent inhibition of the N-methyl-d-aspartate currents by felbamate: a gating modifier with selective binding to the desensitized channels. Mol Pharmacol 65(2):370–380. doi:10.1124/mol.65.2.370

    Article  CAS  PubMed  Google Scholar 

  30. Kussius CL, Popescu GK (2010) NMDA receptors with locked glutamate-binding clefts open with high efficacy. J Neurosci 30(37):12474–12479. doi:10.1523/JNEUROSCI. 3337-10.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511(7508):191–197. doi:10.1038/nature13548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lester RAJ, Tong G, Jahr CE (1993) Interactions between the glycine and glutamate binding-sites of the NMDA receptor. J Neurosci 13(3):1088–1096

    CAS  PubMed  Google Scholar 

  33. Low CM, Lyuboslavsky P, French A, Le P, Wyatte K, Thiel WH, Marchan EM, Igarashi K, Kashiwagi K, Gernert K, Williams K, Traynelis SF, Zheng F (2003) Molecular determinants of proton-sensitive N-methyl-d-aspartate receptor gating. Mol Pharmacol 63(6):1212–1222. doi:10.1124/mol.63.6.1212

    Article  CAS  PubMed  Google Scholar 

  34. Lynch DR, Guttmann RP (2001) NMDA receptor pharmacology: perspectives from molecular biology. Curr Drug Targets 2(3):215–231

    Article  CAS  PubMed  Google Scholar 

  35. Mayer ML, Armstrong N (2004) Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66:161–181. doi:10.1146/annurev.physiol.66.050802.084104

    Article  CAS  PubMed  Google Scholar 

  36. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256(5060):1217–1221

    Article  CAS  PubMed  Google Scholar 

  37. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354(6348):31–37. doi:10.1038/354031a0

    Article  CAS  PubMed  Google Scholar 

  38. Murthy SE, Shogan T, Page JC, Kasperek EM, Popescu GK (2012) Probing the activation sequence of NMDA receptors with lurcher mutations. J Gen Physiol 140(3):267–277. doi:10.1085/jgp.201210786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Panchenko VA, Glasser CR, Mayer ML (2001) Structural similarities between glutamate receptor channels and K+ channels examined by scanning mutagenesis. J Gen Physiol 117(4):345–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ren H, Zhao Y, Wu M, Peoples RW (2013) A novel alcohol-sensitive position in the N-methyl-d-aspartate receptor GluN2A subunit M3 domain regulates agonist affinity and ion channel gating. Mol Pharmacol 84(4):501–510. doi:10.1124/mol.113.085993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280(5369):1596–1599

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt C, Hollmann M (2008) Apparent homomeric NR1 currents observed in Xenopus oocytes are caused by an endogenous NR2 subunit. J Mol Biol 376(3):658–670. doi:10.1016/j.jmb.2007.11.105

    Article  CAS  PubMed  Google Scholar 

  43. Schoppa NE, Sigworth FJ (1998) Activation of Shaker potassium channels III. An activation gating model for wild-type and V2 mutant channels. J Gen Physiol 111(2):313–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Siegler Retchless B, Gao W, Johnson JW (2012) A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat Neurosci 15(3):406–413. doi:10.1038/nn.3025, S401-402

    Article  PubMed  Google Scholar 

  45. Sobolevsky AI, Koshelev SG, Khodorov BI (1999) Probing of NMDA channels with fast blockers. J Neurosci 19(24):10611–10626

    CAS  PubMed  Google Scholar 

  46. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462(7274):745–756. doi:10.1038/nature08624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Sommer B, Burnashev N, Verdoorn TA, Keinanen K, Sakmann B, Seeburg PH (1992) A glutamate receptor channel with high affinity for domoate and kainate. EMBO J 11(4):1651–1656

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Sur C, Kinney GG (2007) Glycine transporter 1 inhibitors and modulation of NMDA receptor-mediated excitatory neurotransmission. Curr Drug Targets 8(5):643–649

    Article  CAS  PubMed  Google Scholar 

  49. Wo ZG, Oswald RE (1995) A topological analysis of goldfish kainate receptors predicts three transmembrane segments. J Biol Chem 270(5):2000–2009

    Article  CAS  PubMed  Google Scholar 

  50. Xu M, Smothers CT, Trudell J, Woodward JJ (2012) Ethanol inhibition of constitutively open N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 340(1):218–226. doi:10.1124/jpet.111.187179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Yuan H, Erreger K, Dravid SM, Traynelis SF (2005) Conserved structural and functional control of N-methyl-d-aspartate receptor gating by transmembrane domain M3. J Biol Chem 280(33):29708–29716. doi:10.1074/jbc.M414215200

    Article  CAS  PubMed  Google Scholar 

  52. Zheng J, Sigworth FJ (1998) Intermediate conductances during deactivation of heteromultimeric shaker potassium channels. J Gen Physiol 112(4):457–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Zhu S, Stroebel D, Yao CA, Taly A, Paoletti P (2013) Allosteric signaling and dynamics of the clamshell-like NMDA receptor GluN1 N-terminal domain. Nat Struct Mol Biol 20(4):477–485. doi:10.1038/nsmb.2522

    Article  CAS  PubMed  Google Scholar 

  54. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N (1997) Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388(6644):769–773. doi:10.1038/42009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants NHRI-EX102-10006NI and NHRI-EX103-10006NI from the National Health Research Institutes and Grant NSC100-2320-B-002-009-MY3 from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Chin Kuo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Generation of constitutively open channels by MTS modification of A652C (GluN1) and A651C (GluN2) mutations. a Before MTSET modification, the same experiment as that described in Fig. 8a was repeated in GluN1(A652C), and GluN1(A652C)/ GluN2(A651E) mutant channels. The thick line, gray bar, white bar, and black bar represent application of Mg2+-free NMG-Tyrode, Mg2+-free Na+-Tyrode, Mg2+-free Na+-Tyrode solution containing 300 μM NMDA + 30 μM glycine, and Na+-Tyrode solution containing 2 mM Mg2+, respectively. b MTSET reagents were applied with agonists (300 μM NMDA + 30 μM glycine) for 12 sec. The white and red bars above the current trace indicate application of the agonists and MTSET, respectively. MTSET has a rapid and very small inhibitory effect on the WT channel. The effect, however, is completely reversible and thus most likely ascribable to mild pore block rather than protein modification by the MTS agents. On the other hand, MTS modification irreversibly enhances the currents in the GluN1(A652C) single mutant channel with a time constant of ∼6.2 sec. In sharp contrast, MTS modification irreversibly inhibits (rather than enhances) the currents in the GluN1(A652C)/ GluN2(A651E) double mutant channel with a much shorter time constant of 754 ms. c After MTSET modification, the same experiment as that described in Fig. 8a was repeated in GluN1(A652C), and GluN1(A652C)/ GluN2(A651E) mutant channels. The thick line, gray bar, white bar, and black bar represent application of Mg2+-free NMG-Tyrode, Mg2+-free Na+-Tyrode, Mg2+-free Na+-Tyrode solution containing 300 μM NMDA + 30 μM glycine, and Na+-Tyrode solution containing 2 mM Mg2+, respectively. d Cumulative results are obtained with the same experimental protocol described in part b (n = 3-6 for each different mutants). Note the modification rates are much higher in the GluN1(A652C)/ GluN2(A651E) and GluN1(A652E)/ GluN2(A651C) double mutant channels than in the GluN1(A652C) or GluN2(A651C) single mutant channels. e Cumulative results are obtained with the same experimental protocol described in part c (n = 3-6 for each different mutants). f Double-mutant cycle analysis of different mutant channels after MTS modification. (PDF 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, YC., Kuo, CC. The differential contribution of GluN1 and GluN2 to the gating operation of the NMDA receptor channel. Pflugers Arch - Eur J Physiol 467, 1899–1917 (2015). https://doi.org/10.1007/s00424-014-1630-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1630-z

Keywords

Navigation