Skip to main content

Advertisement

Log in

MAG-EPA and 17,18-EpETE target cytoplasmic signalling pathways to reduce short-term airway hyperresponsiveness

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

This study was aimed to investigate the role of eicosapentaenoic acid monoacylglyceride (MAG-EPA) and 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) on the regulation of contractile reactivity and nuclear protein expression in 72-h-cultured and TNF-α-treated guinea pig tracheal rings. Tension measurements performed on native tissues demonstrated that the cytochrome P-450 epoxygenase (CYP450)-dependent EPA metabolite, 17,18-EpETE, displayed a higher potency than MAG-EPA in inhibiting U-46619-induced tone. Calphostin C (a PKC inhibitor), whether in association or not with MAG-EPA or 17,18-EpETE, had no further effect, while 17,18-EpETE and Y-27632 (a Rho kinase inhibitor) yielded additive effects. Of note, MAG-EPA and 17,18-EpETE pre-treatments normalized the contractile responses to broncho-constrictive agents in 72-h-cultured trachea. The enhanced expression of TNF-α, P-p65-nuclear factor kappaB (NF)-κB, c-fos and c-Jun in 72-h-cultured tissues likely contributed to the hyperresponsiveness. β-Escin-permeabilized preparations demonstrated that 17,18-EpETE abolished Ca2+ hypersensitivity, suggesting a blunting of PKC and/or Rho kinase activation. Lastly, activation of NF-κB and activating protein-1 (AP-1) signalling by exogenous TNF-α markedly increased the contractile response to MCh, through an increase in 17-kDa PKC-potentiated inhibitory protein of PP1 (CPI-17) phosphorylation and IκBα degradation. Dual incubation of 17,18-EpETE with calphostin C or Y-27632 induced cumulative inhibitory effects on MCh responses in TNF-α-incubated tracheal rings. 17,18-EpETE also reduced the detection level of P-p65-NF-κB and AP-1 subunits. The present data provide evidence that MAG-EPA, through its bioactive metabolite, represents a prospective pharmacological target in respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AHR:

Airway hyperresponsiveness

HT:

Hyperreactive trachea

MAG-EPA:

Eicosapentaenoic acid monoacylglyceride

AP-1:

Activating protein-1

PUFA:

Polyunsaturated fatty acid

TNF-α:

Tumour necrosis factor alpha

References

  1. Benoit C, Renaudon B, Salvail D, Rousseau E (2001) EETs relax airway smooth muscle via an EpDHF effect: BK(Ca) channel activation and hyperpolarization. Am J Physiol Lung Cell Mol Physiol 280(5):L965–L973

    CAS  PubMed  Google Scholar 

  2. Brightling C, Berry M, Amrani Y (2008) Targeting TNF-alpha: a novel therapeutic approach for asthma. J Allergy Clin Immunol 121(1):5–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bruns RF, Miller FD, Merriman RL, Howbert JJ, Heath WF, Kobayashi E, Takahashi I, Tamaoki T, Nakano H (1991) Inhibition of protein kinase C by calphostin C is light-dependent. Biochem Biophys Res Commun 176(1):288–293

    Article  CAS  PubMed  Google Scholar 

  4. Carlin S, Yang KX, Donnelly R, Black JL (1999) Protein kinase C isoforms in human airway smooth muscle cells: activation of PKC-zeta during proliferation. Am J Physiol 276(3):L506–L512

    CAS  PubMed  Google Scholar 

  5. Chang JH, Pratt JC, Sawasdikosol S, Kapeller R, Burakoff SJ (1998) The small GTP-binding protein Rho potentiates AP-1 transcription in T cells. Mol Cell Biol 18(9):4986–4993

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Chang CS, Sun HL, Lii CK, Chen HW, Chen PY, Liu KL (2010) Gamma-linolenic acid inhibits inflammatory responses by regulating NF-kappaB and AP-1 activation in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammation 33(1):46–57

    Article  CAS  PubMed  Google Scholar 

  7. Chiba Y, Misawa M (2004) The role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness. J Smooth Muscle Res 40(4–5):155–678

    Article  PubMed  Google Scholar 

  8. Cleary RA, Wang R, Wang T, Tang DD (2013) Role of Abl in airway hyperresponsiveness and airway remodeling. Respir Res 11:14–105

    Google Scholar 

  9. Dakshinamurti S, Mellow L, Stephens NL (2005) Regulation of pulmonary arterial myosin phosphatase activity in neonatal circulatory transition and in hypoxic pulmonary hypertension: a role for CPI-17. Pediatr Pulmonol 40:398–407

    Article  CAS  PubMed  Google Scholar 

  10. Diaz Encarnacion MM, Warner GM, Cheng J, Gray CE, Nath KA, Grande JP (2011) n-3 fatty acids block TNF-α-stimulated MCP-1 expression in rat mesangial cells. Am J Physiol Ren Physiol 300(5):F1142–F1151

    Article  Google Scholar 

  11. Eto M, Bock R, Brautigan DL, Linden DJ (2002) Cerebellar long-term synaptic depression requires PKC-mediated activation of CPI-17, a myosin/moesin phosphatase inhibitor. Neuron 36:1145–1158

    Article  CAS  PubMed  Google Scholar 

  12. Eto M, Senba S, Morita F, Yazawa M (1997) Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI-17) in smooth muscle: its specific localization in smooth muscle. FEBS Lett 410:356–360

    Article  CAS  PubMed  Google Scholar 

  13. Gallos G, Townsend E, Yim P, Virag L, Zhang Y, Xu D, Bacchetta M, Emala CW (2012) Airway epithelium is a predominant source of endogenous airway GABA and contributes to relaxation of airway smooth muscle tone. Am J Physiol Lung Cell Mol Physiol 304(3):L191–L197

    Article  PubMed Central  PubMed  Google Scholar 

  14. Henderson WR Jr, Chi EY, Teo JL, Nguyen C, Kahn MA (2002) Small molecule inhibitor of redox-regulated NF-kappa B and activator protein-1 transcription blocks allergic airway inflammation in a mouse asthma model. J Immunol 169(9):5294–5299

    Article  PubMed  Google Scholar 

  15. Henry PJ, Mann TS, Goldie RG (2005) A Rho kinase inhibitor, Y-27632 inhibits pulmonary eosinophilia, bronchoconstriction and airways hyperresponsiveness in allergic mice. Pulm Pharmacol Ther 18(1):67–74

    Article  CAS  PubMed  Google Scholar 

  16. Holgate ST (2011) The sentinel role of the airway epithelium in asthma pathogenesis. Immunol Rev 242(1):205–219

    Article  CAS  PubMed  Google Scholar 

  17. Hoover WC, Zhang W, Xue Z, Gao H, Chernoff J, Clapp DW, Gunst SJ, Tepper RS (2012) Inhibition of p21 activated kinase (PAK) reduces airway responsiveness in vivo and in vitro in murine and human airways. PLoS One 7(8):e42601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hu W, Mahavadi S, Li F, Murthy KS (2007) Upregulation of RGS4 and downregulation of CPI-17 mediate inhibition of colonic muscle contraction by interleukin-1beta. Am J Physiol Cell Physiol 293:C1991–C2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Huang XS, Chen LY, Doerner AM, Pan WW, Smith L, Huang S, Papadimos TJ, Pan ZK (2009) An atypical protein kinase C (PKC zeta) plays a critical role in lipopolysaccharide-activated NF-κB in human peripheral blood monocytes and macrophages. J Immunol 182(9):5810–5815

    Article  CAS  PubMed  Google Scholar 

  20. Hunter I, Cobban HJ, Vandenabeele P, Macewan DJ, Nixon GF (2003) Tumor necrosis factor-alpha-induced activation of Rho A in airway smooth muscle cells: role in the Ca2+ sensitization and myosin light chain20 phosphorylation. Mol Pharmacol 63(3):714–721

    Article  CAS  PubMed  Google Scholar 

  21. Im DS (2012) Omega-3 fatty acids in anti-inflammation (pro-resolution) and GPCRs. Prog Lipid Res 51(3):232–237

    Article  CAS  PubMed  Google Scholar 

  22. Ismailoglu UB, Van Scott MR, Fedan JS (2009) Effects of cytokines on mechanical and epithelial bioelectric responses to methacholine and hyperosmolarity in guinea-pig airways: an in vitro study. Eur J Pharmacol 612(1–3):115–121

    Article  CAS  PubMed  Google Scholar 

  23. Kagoshima M, Ito K, Cosio B, Adcock IM (2003) Glucocorticoid suppression of nuclear factor-kappa B: a role for histone modifications. Biochem Soc Trans 31(Pt1):60–65

    CAS  PubMed  Google Scholar 

  24. Kubota T, Arita M, Isobe Y, Iwamoto R, Goto T, Yoshioka T, Urabe D, Inoue M, Arai H (2014) Eicosapentanoic acid is converted via ω-3 epoxygenation to the anti-inflammatory metabolite 12-hydroxy-17,18-epoxyeicosatetrenoic acid. FASEB J 28(2):586–593

    Article  CAS  PubMed  Google Scholar 

  25. Lauterbach B, Barbosa-Sicard E, Wang MH, Honeck H, Kärgel E, Theuer J, Schwartzman ML, Haller H, Luft FC, Gollasch M, Schunck WH (2002) Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension 39:609–613

    Article  CAS  PubMed  Google Scholar 

  26. Manerba A, Vizzardi E, Metra M, Dei Cas L (2010) n-3 PUFAs and cardiovascular disease prevention. Futur Cardiol 6(3):343–350

    Article  CAS  Google Scholar 

  27. Morin C, Fortin S, Cantin AM, Rousseau É (2013) MAG-EPA resolves lung inflammation in an allergic model of asthma. Clin Exp Allergy 43(9):1071–1082

    Article  CAS  PubMed  Google Scholar 

  28. Morin C, Fortin S, Rousseau E (2012) Bronchial inflammation induced PKC zeta over-expression: involvement in mechanical properties of airway smooth muscle. Can J Physiol Pharmacol 90(2):261–269

    Article  CAS  PubMed  Google Scholar 

  29. Morin C, Proteau S, Rousseau E, Brayden J (2005) Organ-cultured airway explants: a new model of airway hyper responsiveness. Exp Lung Res 31(7):719–744

    Article  CAS  PubMed  Google Scholar 

  30. Morin C, Sirois M, Echavé V, Albadine R, Rousseau E (2010) 17,18-epoxyeicosatetraenoic acid targets PPARγ and p38 mitogen-activated protein kinase to mediate its anti-inflammatory effects in the lung: role of soluble epoxide hydrolase. Am J Respir Cell Mol Biol 43(5):564–575

    Article  CAS  PubMed  Google Scholar 

  31. Morin C, Sirois M, Echave V, Gomes MM, Rousseau E (2008) EET displays anti-inflammatory effects in TNF-alpha stimulated human bronchi: putative role of CPI-17. Am J Respir Cell Mol Biol 38(2):192–201

    Article  CAS  PubMed  Google Scholar 

  32. Morin C, Sirois M, Echave V, Rizcallah E, Rousseau E (2009) Relaxing effects of 17(18)-EpETE on arterial and airway smooth muscles in human lung. Am J Physiol Lung Cell Mol Physiol 296(1):L130–L139

    Article  CAS  PubMed  Google Scholar 

  33. Ohama T, Hori M, Sato K, Ozaki H, Karaki H (2003) Chronic treatment with interleukin-1beta attenuates contractions by decreasing the activities of CPI-17 and MYPT-1 in intestinal smooth muscle. J Biol Chem 278:48794–48804

    Article  CAS  PubMed  Google Scholar 

  34. Pelaia G, Renda T, Gallelli L, Vatrella A, Busceti MT, Agati S, Caputi M, Cazzola M, Maselli R, Marsico SA (2008) Molecular mechanisms underlying airway smooth muscle contraction and proliferation: implications for asthma. Respir Med 102(8):1173–1181

    Article  PubMed  Google Scholar 

  35. Pyne S, Pyne NJ (1993) Bradykinin stimulates phospholipase D in primary cultures of guinea-pig tracheal smooth muscle. Biochem Pharmacol 45(3):593–603

    Article  CAS  PubMed  Google Scholar 

  36. Ratz PH, Meehl JT, Eddinger TJ (2002) RhoA kinase and protein kinase C participate in regulation of rabbit stomach fundus smooth muscle contraction. Br J Pharmacol 137(7):983–992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Redhu NS, Saleh A, Halayko AJ, Ali AS, Gounni AS (2011) Essential role of NF-κB and AP-1 transcription factors in TNF-α-induced TSLP expression in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 300(3):L479–L485

    Article  CAS  PubMed  Google Scholar 

  38. Renzetti LM, Paciorek PM, Tannu SA, Rinaldi NC, Tocker JE, Wasserman MA, Gater PR (1996) Pharmacological evidence for tumor necrosis factor as a mediator of allergic inflammation in the airways. J Pharmacol Exp Ther 278(2):847–853

    CAS  PubMed  Google Scholar 

  39. Revermann M, Schloss M, Mieth A, Babelova A, Schröder K, Neofitidou S, Buerkl J, Kirschning T, Schermuly RT, Hofstetter C, Brandes RP (2011) Levosimendan attenuates pulmonary vascular remodeling. Intensive Care Med 37(8):1368–1377

    Article  CAS  PubMed  Google Scholar 

  40. Ricciardolo FL, Nijkamp F, De Rose V, Folkerts G (2008) The guinea pig as an animal model for asthma. Curr Drug Targets 9(6):452–465

    Article  CAS  PubMed  Google Scholar 

  41. Ruan YC, Zhou W, Chan HC (2011) Regulation of smooth muscle contraction by the epithelium: Role of prostaglandins. Physiology 26:156–170

    Article  CAS  PubMed  Google Scholar 

  42. Sakai H, Chiba Y, Hirano T, Misawa M (2005) Possible involvement of CPI-17 in augmented bronchial smooth muscle contraction in antigen-induced airway hyper-responsive rats. Mol Pharmacol 68(1):145–151

    CAS  PubMed  Google Scholar 

  43. Senouvo FY, Tabet Y, Morin C, Albadine R, Sirois C, Rousseau E (2011) Improved bioavailability of epoxyeicosatrienoic acids reduces TP-receptor agonist-induced tension in human bronchi. Am J Physiol Lung Cell Mol Physiol 301(5):L675–L682

    Article  CAS  PubMed  Google Scholar 

  44. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136

    Article  CAS  PubMed  Google Scholar 

  45. Shea-Donohue T, Notari L, Sun R, Zhao A (2012) Mechanisms of smooth muscle responses to inflammation. Neurogastroenterol Motil 24(9):802–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Thomas PS, Yates DH, Barnes PJ (1995) Tumor necrosis factor-alpha increases airway responsiveness and sputum neutrophilia in normal human subjects. Am J Respir Crit Care Med 152:76–80

    Article  CAS  PubMed  Google Scholar 

  47. Wang T, Kendig DM, Smolock EM, Moreland RS (2009) Carbachol induced rabbit bladder smooth muscle contraction: roles of protein kinase C and Rho kinase. Am J Physiol Ren Physiol 297(6):F1534–F1542

    Article  CAS  Google Scholar 

  48. Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107(2):135–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zhao Y, Chen LH (2005) Eicosapentanoic acid prevents lipopolysaccharide-stimulated DNA binding of activator protein-1 and c-Jun N-terminal kinase activity. J Nutr Biochem 16(2):78–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Caroline Morin and Dr. Samuel Fortin from SCF Pharma for the gift of MAG-EPA. The authors wish to thank Mr. Pierre Pothier, Ms. Stephanie Corriveau and Elyse Burt for critical review of the manuscript. This work is supported by a CIHR grant MOP-111112 to ER who is a member of the Respiratory Health Network of the FRQS: www.rsr-frqs.ca. We are especially grateful to the members of the animal care facility at the Faculty of Medicine and Health Sciences for their precious collaboration, as well as Mr. Yacine Tabet for logistic support.

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Rousseau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaddaj-Mallat, R., Rousseau, É. MAG-EPA and 17,18-EpETE target cytoplasmic signalling pathways to reduce short-term airway hyperresponsiveness. Pflugers Arch - Eur J Physiol 467, 1591–1605 (2015). https://doi.org/10.1007/s00424-014-1584-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1584-1

Keywords

Navigation