Skip to main content
Log in

Glucose deprivation promotes activation of mTOR signaling pathway and protein synthesis in rat skeletal muscle cells

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Signaling through mammalian target of rapamycin (mTOR) has been shown to play a central role in the regulation of skeletal muscle growth induced by a wide range of stimuli either mechanical or metabolic, such as growth factors and amino acids. Here, we demonstrate that mTOR and its downstream target, the ribosomal S6 kinase (p70S6K), are activated in L6 myocytes by a short-term glucose deprivation. Such response is specific of skeletal muscle and is likely responsible for the increased rate of protein synthesis and expression of the muscle-specific proteins during recovery from glucose deprivation. Nitric oxide and phosphatidylinositol-3-kinase (PI3K) are upstream positive regulators of mTOR since their pharmacological inhibition prevents the activation of p70S6K in response to glucose deprivation. We therefore propose a model of response to a brief period of glucose deprivation that may occur in skeletal muscle cells during resistance exercise and that may lead to protein accretion when blood flow recovers and all nutrients are again available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

4E-BP1:

Eukaryotic translation initiation factor 4E-binding protein 1

AICAR:

5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside

AMPK:

AMP-activated protein kinase

CC:

6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a]pyrimidine (compound C)

JNK/MAPK:

c-Jun N-terminal kinase-mitogen-activated protein kinase

eIF4E:

Eukaryotic translation initiation factor 4E

L-NAME:

N(G)-nitro-l-arginine methyl ester

MAFbx:

Muscle atrophy F-box

mTOR:

Mammalian target of rapamycin

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PI3K:

Phosphatidylinositol-3-kinase

p70S6K :

p70S6 kinase

References

  1. Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol 100:1460–1466. doi:10.1152/japplphysiol.01267.2005

    Article  CAS  PubMed  Google Scholar 

  2. Baar K, Esser KA (1999) Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276:C120–C127

    CAS  PubMed  Google Scholar 

  3. Balon TW, Nadler JL (1997) Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 82:359–363

    CAS  PubMed  Google Scholar 

  4. Barcroft H, Millen JL (1939) The blood flow through muscle during sustained contraction. J Physiol 97:17–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Blackburn RV, Spitz DR, Liu X, Galoforo SS, Sim JE, Ridnour LA, Chen JC, Davis BH, Corry PM, Lee YJ (1999) Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radic Biol Med 26:419–430

    Article  CAS  PubMed  Google Scholar 

  6. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019. doi:10.1038/ncb1101-1014

    Article  CAS  PubMed  Google Scholar 

  7. Bolster DR, Kubica N, Crozier SJ, Williamson DL, Farrell PA, Kimball SR, Jefferson LS (2003) Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. J Physiol 553:213–220. doi:10.1113/jphysiol.2003.047019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Braun T, Bober E, Buschhausen-Denker G, Kothz S, Grzeschik KH, Arnold HH (1989) Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. EMBO J 8:3617–3625

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Canabal DD, Song Z, Potian JG, Beuve A, McArdle JJ, Routh VH (2007) Glucose, insulin, and leptin signaling pathways modulate nitric oxide synthesis in glucose-inhibited neurons in the ventromedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 292:R1418–R1428. doi:10.1152/ajpregu.00216.2006

    Article  CAS  PubMed  Google Scholar 

  10. Caro-Maldonado A, Tait SW, Ramírez-Peinado S, Ricci JE, Fabregat I, Green DR, Muñoz-Pinedo C (2010) Glucose deprivation induces an atypical form of apoptosis mediated by caspase-8 in Bax-Bak-deficient cells. Cell Death Differ 17:1335–1344. doi:10.1038/cdd.2010.21

    Article  CAS  PubMed  Google Scholar 

  11. Chen CH, Kiyan V, Zhylkibayev AA, Kazyken D, Bulgakova O, Page KE, Bersimbaev RI, Spooner E, Sarbassov DD (2013) Autoregulation of the mTOR Complex 2 integrity is controlled by the ATP-dependent mechanism. J Biol Chem 288:27019–27030. doi:10.1074/jbc.M113.498055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K (1992) Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol 73:1383–1388

    CAS  PubMed  Google Scholar 

  13. Chopra I, Li HF, Wang H, Webster KA (2012) Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia 55:783–794. doi:10.1007/s00125-011-2407-y

    Article  CAS  PubMed  Google Scholar 

  14. Cornall L, Hryciw D, Mathai M, McAinch A (2012) Generation and use of cultured human primary myotubes. Muscle Biopsy, Dr. Challa Sundaram (Ed.), ISBN: 978-953-307-778-9, InTech, DOI: 10.5772/33534

  15. Corton JM, Gillespie JG, Hardie DG (1994) Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol 4:315–324

    Article  CAS  PubMed  Google Scholar 

  16. de Lange P, Moreno M, Silvestri E, Lombardi A, Goglia F, Lanni A (2007) Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms. FASEB J 21:3431–3441. doi:10.1096/fj.07-8527rev

    Article  PubMed  Google Scholar 

  17. Dufner A, Thomas G (1999) Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 253:100–109

    Article  CAS  PubMed  Google Scholar 

  18. Fiorito F, Irace C, Di Pascale A, Colonna A, Iovane G, Pagnini U, Santamaria R, De Martino L (2013) 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes BHV-1 infection in mammalian cells by interfering with iron homeostasis regulation. PLoS One. doi:10.1371/journal.pone.0058845

    Google Scholar 

  19. Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103:903–910. doi:10.1152/japplphysiol.00195

    Article  CAS  PubMed  Google Scholar 

  20. Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R, Sonenberg N (2001) Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15:2852–2864. doi:10.1101/gad.912401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C (1975) Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports 7:185–198

    CAS  PubMed  Google Scholar 

  22. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J (1998) Amino acid sufficiency and mTOR regulate p70S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273:14484–14494. doi:10.1074/jbc.273.23.14484

    Article  CAS  PubMed  Google Scholar 

  23. Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908. doi:10.1101/gad.1742011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855. doi:10.1146/annurev.biochem.67.1.821

    Article  CAS  PubMed  Google Scholar 

  25. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262. doi:10.1038/nrm3311

    Article  CAS  PubMed  Google Scholar 

  26. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945. doi:10.1101/gad.1212704

    Article  CAS  PubMed  Google Scholar 

  27. Holloszy JO, Kohrt WM (1996) Regulation of carbohydrate and fat metabolism during and after exercise. Annu Rev Nutr 16:121–138. doi:10.1146/annurev.nu.16.070196.001005

    Article  CAS  PubMed  Google Scholar 

  28. Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci U S A 103:4741–4746. doi:10.1073/pnas.0600678103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Howell JJ, Ricoult SJ, Ben-Sahra I, Manning BD (2013) A growing role for mTOR in promoting anabolic metabolism. Biochem Soc Trans 41:906–912

    Article  CAS  PubMed  Google Scholar 

  30. Hutber CA, Hardie DG, Winder WW (1997) Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase activity. Am J Physiol Endocrinol Metab 272:E262–E266

    CAS  Google Scholar 

  31. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  32. Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G (1997) Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J 16:3693–3704. doi:10.1093/emboj/16.12.3693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp BE, Witters LA, Mimura O, Yonezawa K (2003) A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 8:65–79. doi:10.1046/j.1365-2443.2003.00615.x

    Article  CAS  PubMed  Google Scholar 

  34. Kline WO, Panaro FJ, Yang H, Bodine SC (2007) Rapamycin inhibits the growth and muscle sparing effects of clenbuterol. J Appl Physiol 102:740–747. doi:10.1152/japplphysiol.00873

    Article  CAS  PubMed  Google Scholar 

  35. Kobzik L, Reid MB, Bredt DS, Stamler JS (1994) Nitric oxide in skeletal muscle. Nature 372:546–548. doi:10.1038/372546a0

    Article  CAS  PubMed  Google Scholar 

  36. Kobzik L, Stringer B, Balligand JL, Reid MB, Stamler JS (1995) Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem Biophys Res Commun 211:375–381

    Article  CAS  PubMed  Google Scholar 

  37. Kohn AD, Summers SA, Birnbaum MJ, Roth RA (1996) Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271:31372–31378. doi:10.1074/jbc.271.49.31372

    Article  CAS  PubMed  Google Scholar 

  38. Lee YJ, Galoforo SS, Berns CM, Chen JC, Davis BH, Sim JE, Corry PM, Spitz DR (1998) Glucose deprivation-induced cytotoxicity and alterations in mitogen-activated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. J Biol 273:5294–5299. doi:10.1074/jbc.273.9.5294

    CAS  Google Scholar 

  39. Lee YJ, Galoforo SS, Sim JE, Ridnour LA, Choi J, Forman HJ, Corry PM, Spitz DR (2000) Dominant-negative Jun N-terminal protein kinase (JNK-1) inhibits metabolic oxidative stress during glucose deprivation in a human breast carcinoma cell line. Free Radic Biol Med 28:575–584

    Article  CAS  PubMed  Google Scholar 

  40. Lira VA, Soltow QA, Long JH, Betters JL, Sellman JE, Criswell DS (2007) Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am J Physiol Endocrinol Metab 293:E1062–E1068. doi:10.1152/ajpendo.00045.2007

    Article  CAS  PubMed  Google Scholar 

  41. Loenneke JP, Wilson GJ, Wilson JM (2010) A mechanistic approach to blood flow occlusion. Int J Sports Med 31:1–4. doi:10.1055/s-0029-1239499

    Article  CAS  PubMed  Google Scholar 

  42. MacDougall JD, Gibala MJ, Tarnopolsky MA, MacDonald JR, Interisano SA, Yarasheski KE (1995) The time course for elevated muscle protein synthesis following heavy resistance exercise. Can J Appl Physiol 20:480–486

    Article  CAS  PubMed  Google Scholar 

  43. Marambio P, Toro B, Sanhueza C, Troncoso R, Parra V, Verdejo H, García L, Quiroga C, Munafo D, Jlizondo J, Bravo R, González M-J, Diaz-Araya G, Pedrozo Z, Chiong M, Colombo MI, Lavandero S (2010) Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochim Biophys Acta 1802:509–518. doi:10.1016/j.bbadis.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  44. Marletta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78:927–930

    Article  CAS  PubMed  Google Scholar 

  45. Menconi M, Gonnella P, Petkova V, Lecker S, Hasselgren PO (2008) Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. J Cell Biochem 2008(105):353–364. doi:10.1002/jcb.21833

    Article  Google Scholar 

  46. Miniaci MC, Bucci M, Santamaria R, Irace C, Cantalupo A, Cirino G, Scotto P (2013) CL316,243, a selective β3-adrenoceptor agonist, activates protein translation through mTOR/p70S6K signaling pathway in rat skeletal muscle cells. Pflugers Arch 465:509–516. doi:10.1007/s00424-012-1213-9

    Article  CAS  PubMed  Google Scholar 

  47. Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA (2011) Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. J Physiol 589:1831–1846. doi:10.1113/jphysiol.2011.205658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012. doi:10.1056/NEJM199312303292706

    Article  CAS  PubMed  Google Scholar 

  49. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol Endocrinol Metab 273:E99–E107

    CAS  Google Scholar 

  50. Rasmussen BB, Phillips SM (2003) Contractile and nutritional regulation of human muscle growth. Exerc Sport Sci Rev 31:127–131

    Article  PubMed  Google Scholar 

  51. Schoenfeld BJ (2013) Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med 43:179–194. doi:10.1007/s40279-013-0017-1

    Article  PubMed  Google Scholar 

  52. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671. doi:10.1038/35007534

    CAS  PubMed  Google Scholar 

  53. Sellman JE, DeRuisseau KC, Betters JL, Lira VA, Soltow QA, Selsby JT, Criswell DS (2006) In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle. J Appl Physiol 100:258–265. doi:10.1152/japplphysiol.00936

    Article  CAS  PubMed  Google Scholar 

  54. Smith LW, Smith JD, Criswell DS (2002) Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. J Appl Physiol 92:2005–2011. doi:10.1152/j

    Article  CAS  PubMed  Google Scholar 

  55. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ (2000) Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann N Y Acad Sci 899:349–362. doi:10.1111/j.17496632.2000.tb06199.x

    Article  CAS  PubMed  Google Scholar 

  56. Suhr F, Gehlert S, Grau M, Bloch W (2013) Skeletal muscle function during exercise—fine-tuning of diverse subsystems by nitric oxide. Int J Mol Sci 14:7109–7139. doi:10.3390/ijms14047109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N (2000) Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol 88:61–65

    CAS  PubMed  Google Scholar 

  58. Tamaki T, Uchiyama S, Tamura T, Nakano S (1994) Changes in muscle oxygenation during weight-lifting exercise. Eur J Appl Physiol Occup Physiol 68:465–469

    Article  CAS  PubMed  Google Scholar 

  59. Vandenburgh H, Kaufman S (1979) In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203:265–268. doi:10.1126/science.569901

    Article  CAS  PubMed  Google Scholar 

  60. Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W, Routh VH (2004) The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 53:1959–1965

    Article  CAS  PubMed  Google Scholar 

  61. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylationand protein synthesis in human muscle. J Physiol 586:3701–3717. doi:10.1113/jphysiol.2008.153916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484. doi:10.1016/j.cell.2006.01.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Drs Federica Tramontin and Cristina Gambardella for valuable assistance in some of the experiments and Prof. A. Calignano and G. Cirino for their continued interest. We thank Prof. L. Berrino and Dr B. Rinaldi for their kind donation of the MAFbx/atrogin-1 antibody. The authors wish to dedicate this manuscript to Prof. Alfredo Colonna who recently passed away.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Concetta Miniaci or Pietro Scotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miniaci, M.C., Dattolo, M.G., Irace, C. et al. Glucose deprivation promotes activation of mTOR signaling pathway and protein synthesis in rat skeletal muscle cells. Pflugers Arch - Eur J Physiol 467, 1357–1366 (2015). https://doi.org/10.1007/s00424-014-1583-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1583-2

Keywords

Navigation