Skip to main content

Advertisement

Log in

Pseudomonas aeruginosa reduces the expression of CFTR via post-translational modification of NHERF1

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa infections of the airway cells decrease apical expression of both wild-type (wt) and F508del CFTR through the inhibition of apical endocytic recycling. CFTR endocytic recycling is known to be regulated by its interaction with PDZ domain containing proteins. Recent work has shown that the PDZ domain scaffolding protein NHERF1 finely regulates both wt and F508delCFTR membrane recycling. Here, we investigated the effect of P. aeruginosa infection on NHERF1 post-translational modifications and how this affects CFTR expression in bronchial epithelial cells and in murine lung. Both in vitro in bronchial cells, and in vivo in mice, infection reduced CFTR expression and increased NHERF1 molecular weight through its hyper-phosphorylation and ubquitination as a consequence of both bacterial pilin- and flagellin-mediated host–cell interaction. The ability of P. aeruginosa to down-regulate mature CFTR expression was reduced both in vivo in NHERF1 knockout mice and in vitro after silencing NHERF1 expression or mutations blocking its phosphorylation at serines 279 and 301. These studies provide the first evidence that NHERF1 phosphorylation may negatively regulate its action and, therefore, the assembly and function of multiprotein NHERF1 complexes in response to infection. The identification of molecular mechanisms responsible for these effects could identify novel targets to block potential P. aeruginosa interference with the efficacy of potentiator and/or corrector compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CF:

Cystic fibrosis

NHERF1:

Na+/H+ exchanger regulatory factor 1

CFTR:

CF transmembrane conductance regulator

siRNA:

Small interfering RNA

References

  1. Adhikari A, Xu M, Chen ZJ (2007) Ubiquitin- mediated activation of TAK1 and IKK. Oncogene 26:3214–3226

    Article  CAS  PubMed  Google Scholar 

  2. Bezzerri V, Borgatti M, Finotti A, Tamanini A, Gambari R, Cabrini G (2011) Mapping the transcriptional machinery of the IL-8 gene in human bronchial epithelial cells. J Immunol 187:6069–6081

    Article  CAS  PubMed  Google Scholar 

  3. Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host–cell pathways by bacterial pathogens. Nature 449:827–834

    Article  CAS  PubMed  Google Scholar 

  4. Bomberger JM, Ye S, Maceachran DP, Koeppen K, Barnaby RL, O'Toole GA, Stanton BA (2011) A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system. PLoS Pathol 7:e1001325

    Article  CAS  Google Scholar 

  5. Cohen TS, Prince A (2012) Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 18:509–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cornell TT, Fleszar A, McHugh W, Blatt NB, Le Vine AM, Shanley TP (2012) Mitogen-activated protein kinase phosphatase 2, MKP-2, regulates early inflammation in acute lung injury. Am J Physiol Lung Cell Mol Physiol 303:L251–L258. doi:10.1152/ajplung.00063

    Google Scholar 

  7. Dechecchi MC, Nicolis E, Mazzi P, Cioffi F, Bezzerri V, Lampronti I, Huang S, Wiszniewski L, Gambari R, Scupoli MT, Berton G, Cabrini G (2011) Modulators of sphingolipid metabolism reduce lung inflammation. Am J Respir Cell Mol Biol 45:825–833. doi:10.1165/rcmb.2010-0457OC

    Google Scholar 

  8. Dechecchi MC, Nicolis E, Norez C, Bezzerri V, Borgatti M, Mancini I, Rizzotti P, Ribeiro CM, Gambari R, Becq F, Cabrini G (2008) Anti-inflammatory effect of miglustat in bronchial epithelial cells. J Cyst Fibros 7:555–565

    Article  CAS  PubMed  Google Scholar 

  9. Dechecchi MC et al (2012) Pharmacological modulators of sphingolipid metabolism for the treatment of cystic fibrosis lung inflammation. In: Sriramulu D (ed) Cystic fibrosis — renewed hopes through research. InTech Rijeka, Croatia, pp 439–452, ISBN 978-953-51-0287-8

  10. Fanelli T, Cardone RA, Favia M, Guerra L, Zaccolo M, Monterisi S, De Santis T, Riccardi SM, Reshkin SJ, Casavola V (2008) Beta-oestradiol rescues DeltaF508CFTR functional expression in human cystic fibrosis airway CFBE41o- cells through the up-regulation of NHERF1. Biol Cell 100:399–412

    Article  CAS  PubMed  Google Scholar 

  11. Favia M, Guerra L, Fanelli T, Cardone RA, Monterisi S, Di Sole F, Castellani S, Chen M, Seidler U, Reshkin SJ, Conese M, Casavola V (2010) Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o- cells. Mol Biol Cell 21:73–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fouassier L, Nichols MT, Gidey E, McWilliams RR, Robin H, Finnigan C, Howell KE, Housset C, Doctor RB (2005) Protein kinase C regulates the phosphorylation and oligomerization of ERM binding phosphoprotein 50. Exp Cell Res 306:264–273

    Article  CAS  PubMed  Google Scholar 

  13. Fu Z, Bettega K, Carroll S, Buchholz KR, Machen TE (2007) Role of Ca2+ in responses of airway epithelia to Pseudomonas aeruginosa, flagellin, ATP, and thapsigargin. Am J Physiol Lung Cell Mol Physiol 292:L353–L364

    Article  CAS  PubMed  Google Scholar 

  14. Guerra L, Fanelli T, Favia M, Riccardi SM, Busco G, Cardone RA, Carrabino S, Weinman EJ, Reshkin SJ, Conese M, Casavola V (2005) Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells. J Biol Chem 280:40925–40933

    Article  CAS  PubMed  Google Scholar 

  15. Hall RA, Spurney RF, Premont RT, Rahman N, Blitzer JT, Pitcher JA, Lefkowitz RJ (1999) G protein-coupled receptor kinase 6A phosphorylates the Na(+)/H(+) exchanger regulatory factor via a PDZ domain-mediated interaction. J Biol Chem 274:24328–24334

    Article  CAS  PubMed  Google Scholar 

  16. He J, Lau AG, Yaffe MB, Hall RA (2001) Phosphorylation and cell cycle-dependent regulation of Na+/H+ exchanger regulatory factor-1 by Cdc2 kinase. J Biol Chem 276:41559–41565

    Article  CAS  PubMed  Google Scholar 

  17. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  18. Hoo AF, Thia LP, Nguyen TT, Bush A, Chudleigh J, Lum S, Ahmed D, Balfour Lynn I, Carr SB, Chavasse RJ, Costeloe KL, Price J, Shankar A, Wallis C, Wyatt HA, Wade A, Stocks J, on behalf of the London Cystic Fibrosis Collaboration (LCFC) (2012) Lung function is abnormal in 3-month-old infants with cystic fibrosis diagnosed by newborn screening. Thorax 67:874–881

    Article  PubMed  Google Scholar 

  19. Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082

    CAS  PubMed  Google Scholar 

  20. Krachler AM, Woolery AR, Orth K (2011) Manipulation of kinase signaling by bacterial pathogens. J Cell Biol 195:1083–1092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kwon SH, Pollard H, Guggino WB (2007) Knockdown of NHERF1 enhances degradation of temperature rescued DeltaF508 CFTR from the cell surface of human airway cells. Cell Physiol Biochem 20:763–772

    Article  CAS  PubMed  Google Scholar 

  22. Le Gars M, Descamps D, Roussel D, Saussereau E, Guillot L, Ruffin M, Tabary O, Hong SS, Boulanger P, Paulais M, Malleret L, Belaaouaj A, Edelman A, Huerre M, Chignard M, Sallenave JM (2013) Neutrophil elastase degrades cystic fibrosis transmembrane conductance regulator via calpains and disables channel function in vitro and in vivo. Am J Respir Crit Care Med 187:170–179. doi:10.1164/rccm.201205-0875OC, Epub 2012 Dec 6

    Article  PubMed  Google Scholar 

  23. Li J, Poulikakos PI, Dai Z, Testa JR, Callaway DJ, Bu Z (2007) Protein kinase C phosphorylation disrupts Na+/H+ exchanger regulatory factor 1 autoinhibition and promotes cystic fibrosis transmembrane conductance regulator macromolecular assembly. J Biol Chem 282:27086–27099

    Article  CAS  PubMed  Google Scholar 

  24. Liu YC, Penninger J, Karin M (2005) Immunity by ubiquitylation: a reversible process of modification. Nat Rev Immunol 5:941–952

    Article  CAS  PubMed  Google Scholar 

  25. MacEachran DP, Ye S, Bomberger JM, Hogan DA, Swiatecka-Urban A, Stanton BA, O'Toole GA (2007) The Pseudomonas aeruginosa secreted protein PA2934 decreases apical membrane expression of the cystic fibrosis transmembrane conductance regulator. Infect Immun 75:3902–3912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. McNamara N, Gallup M, Sucher A, Maltseva I, McKemy D, Basbaum C (2006) AsialoGM1 and TLR5 cooperate in flagellin-induced nucleotide signaling to activate Erk1/2. Am J Respir Cell Mol Biol 34:653–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Monterisi S, Favia M, Guerra L, Cardone RA, Marzulli D, Reshkin SJ, Casavola V, Zaccolo M (2012) CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity. J Cell Sci 125:1106–1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Muhlebach MS, Stewart PW, Leigh MW, Noah TL (1999) Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 160:186–191

    Article  CAS  PubMed  Google Scholar 

  29. Raghuram V, Hormuth H, Foskett JK (2003) A kinase-regulated mechanism controls CFTR channel gating by disrupting bivalent PDZ domain interactions. Proc Natl Acad Sci U S A 100:9620–9625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273:19797–19801

    Article  CAS  PubMed  Google Scholar 

  31. Swiatecka-Urban A, Duhaime M, Coutermarsh B, Karlson KH, Collawn J, Milewski M, Cutting GR, Guggino WB, Langford G, Stanton BA (2002) PDZ domain interaction controls the endocytic recycling of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 277:40099–40105

    Article  CAS  PubMed  Google Scholar 

  32. Swiatecka-Urban A, Moreau-Marquis S, Maceachran DP, Connolly JP, Stanton CR, Su JR, Barnaby R, O'Toole GA, Stanton BA (2006) Pseudomonas aeruginosa inhibits endocytic recycling of CFTR in polarized human airway epithelial cells. Am J Physiol Cell Physiol 290:C862–C872

    Article  CAS  PubMed  Google Scholar 

  33. Tamanini A, Borgatti M, Finotti A, Piccagli L, Bezzerri V, Favia M, Guerra L, Lampronti I, Bianchi N, Dall'Acqua F, Vedaldi D, Salvador A, Fabbri E, Mancini I, Nicolis E, Casavola V, Cabrini G, Gambari R (2011) Trimethylangelicin reduces IL-8 transcription and potentiates CFTR function. Am J Physiol Lung Cell Mol Physiol 300:L380–L390

    Article  CAS  PubMed  Google Scholar 

  34. Venkatakrishnan A, Stecenko AA, King G, Blackwell TR, Brigham KL, Christman JW, Blackwell TS (2000) Exaggerated activation of nuclear factor-kappaB and altered IkappaB-beta processing in cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol 23:396–403

    Article  CAS  PubMed  Google Scholar 

  35. Verma A, Arora SK, Kuravi SK, Ramphal R (2005) Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response. Infect Immun 73:8237–8246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Voltz JW, Brush M, Sikes S, Steplock D, Weinman EJ, Shenolikar S (2007) Phosphorylation of PDZ1 domain attenuates NHERF-1 binding to cellular targets. J Biol Chem 282:33879–33887

    Article  CAS  PubMed  Google Scholar 

  37. Weinman EJ, Biswas RS, Peng G, Shen L, Turner CL, Xiaofei E, Steplock D, Shenolikar S, Cunningham R (2007) Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium–hydrogen exchanger regulatory factor-1. J Clin Invest 117:3412–3420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zabner J, Karp P, Seiler M, Phillips SL, Mitchell CJ, Saavedra M, Welsh M, Klingelhutz AJ (2003) Development of cystic fibrosis and noncystic fibrosis airway cell lines. Am J Physiol Lung Cell Mol Physiol 284:L844–L854

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Moira Paroni (Infections and Cystic Fibrosis Unit San Raffaele Scientific Institute, Milano, Italy) and Maria Cristina Dechecchi (Laboratory of Molecular Pathology, University Hospital of Verona, Italy) for helpful discussions and suggestions, Alice Prince (Columbia University, NY, USA) for donating the strains: PAO1, PAK, PAK/NP and PAK/fliC and to Valentina Lovato for excellent technical assistance. This work was supported by grants from the Italian Cystic Fibrosis Research Foundation (grant FFC # 08/2010) with the contribution of “La Bottega delle donne” Delegazione FFC di Treviso – Montebelluna (to A.T and S.J.R), V.B is fellow of the Italian Cystic Fibrosis research Foundation (FFC), M.T is fellow of the University Hospital of Verona and from the Deutsche Forschungsgemeinschaft SFB621-C9 (to U.S.)

Author contributions

R.R., S.J.R., A.T. and G.C. are responsible for conception and design of the research; M.F., A.K.S. and B.R. performed the mice infection experiments, U.S. and A.B... supervised the mouse models studies, V.B. and M.T. performed the cell infection experiments, cell cultures and transfections and contributed to the interpretation and analysis of the data, R.R. and M.F. performed immunoblot experiments, cell cultures and transfections and contributed to the interpretation and analysis of the data, A.I. interpreted the results of the histology of the lung, A.T., U.S. and S.J.R. wrote the manuscript and G.C. provided scientific knowledge and supervised the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ursula Seidler or Anna Tamanini.

Additional information

S.J. Reshkin and A. Tamanini contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 99 kb)

Supplementary material S3

(PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubino, R., Bezzerri, V., Favia, M. et al. Pseudomonas aeruginosa reduces the expression of CFTR via post-translational modification of NHERF1. Pflugers Arch - Eur J Physiol 466, 2269–2278 (2014). https://doi.org/10.1007/s00424-014-1474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1474-6

Keywords

Navigation