Skip to main content

Advertisement

Log in

Development of vascular smooth muscle contractility by endothelium-derived transforming growth factor β proteins

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

It is well established that the release of vasodilators and vasoconstrictors from vascular endothelium regulates vascular smooth muscle contraction. In this report, we investigate the role of the endothelium in the development and maintenance of constitutive vascular contractility. For that purpose, contractile activity of cultured bovine aortic smooth muscle cells (BASMCs) embedded in collagen gels was monitored by changes in gel diameter. After culturing for 5 days, ATP- and high KCl solution-induced contractions were significantly enhanced in the gels that were overlaid with bovine aortic endothelial cells (BAECs) or were cultured with conditioned medium of cultured BAECs. ATP-induced Ca2+ transients, recorded in BASMCs cultured with conditioned medium of BAECs, were markedly augmented, but high KCl-induced Ca2+ transients were not affected. BASMCs in control gels were spindle shaped, and those in endothelium-treated gels were more elongated and interconnected. The endothelial conditioned medium also strongly affected the intracellular distribution of actin fibers. Conditioned medium of BAECs contained TGFβ1 and TGFβ2. The TGFβ receptor antagonist SB431542 as well as simultaneous treatment with TGFβ1 and TGFβ2 neutralizing antibodies completely reversed the above effects of endothelial conditioned medium on BASMCs. BAECs medium induced phosphorylation of Smad2 and increased ATP-induced phosphorylation of myosin light chain in BASMCs. The present results indicate that the release of TGFβ1 and TGFβ2 from vascular endothelium affects the contractility of vascular smooth muscle cells by altering their morphology and agonist-induced Ca2+ mobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barnard JA, Lyons RM, Moses HL (1990) The cell biology of transforming growth factor β. Biochim Biophys Acta 1032:79–87

    CAS  PubMed  Google Scholar 

  2. Barton M, Beny JL, d’Uscio LV, Wyss T, Noll G, Luscher TF (1998) Endothelium-independent relaxation and hyperpolarization to C-type natriuretic peptide in porcine coronary arteries. J Cardiovasc Pharmacol 31:377–383

    Article  CAS  PubMed  Google Scholar 

  3. Birukova AA, Birukov KG, Adyshev D, Usatyuk P, Natarajan V, Garcia JG, Verin AD (2005) Involvement of microtubules and Rho pathway in TGFβ1-induced lung vascular barrier dysfunction. J Cell Physiol 204:934–947

    Article  CAS  PubMed  Google Scholar 

  4. Chamley JH, Campbell GR, McConnell JD, Groschel Stewart U (1977) Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tissue Res 177:503–522

    CAS  PubMed  Google Scholar 

  5. Cheng W, Oike M, Hirakawa M, Ohnaka K, Koyama T, Ito Y (2005) Excess l-arginine restores endothelium-dependent relaxation impaired by monocrotaline pyrrole. Toxicol Appl Pharmacol 207:187–194

    Article  CAS  PubMed  Google Scholar 

  6. Churchman AT, Anwar AA, Li FY, Sato H, Ishii T, Mann GE, Siow RC (2009) Transforming growth factor β1 elicits Nrf2-mediated antioxidant responses in aortic smooth muscle cells. J Cell Mol Med 13:2282–2292

    Article  PubMed  Google Scholar 

  7. Clements RT, Minnear FL, Singer HA, Keller RS, Vincent PA (2005) RhoA and Rho-kinase dependent and independent signals mediate TGFβ-induced pulmonary endothelial cytoskeletal reorganization and permeability. Am J Physiol Lung Cell Mol Physiol 288:L294–L306

    Article  CAS  PubMed  Google Scholar 

  8. Cucina A, Corvino V, Sapienza P, Borrelli V, Lucarelli M, Scarpa S, Strom R, Santoro-D’Angelo L, Cavallaro A (1999) Nicotine regulates basic fibroblastic growth factor and transforming growth factor β1 production in endothelial cells. Biochem Biophys Res Commun 257:306–312

    Article  CAS  PubMed  Google Scholar 

  9. Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, Griem ML, Wernick MN, Jacobs E, Polacek DC, dePaola N, Barakat AI (1997) Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu Rev Physiol 59:527–549

    Article  CAS  PubMed  Google Scholar 

  10. Fillinger MF, Sampson LN, Cronenwett JL, Powell RJ, Wagner RJ (1997) Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. J Surg Res 67:169–178

    Article  CAS  PubMed  Google Scholar 

  11. Fitzgibbon J, Morrison JJ, Smith TJ, O’Brien M (2009) Modulation of human uterine smooth muscle cell collagen contractility by thrombin, Y-27632, TNF α and indomethacin. Reprod Biol Endocrinol 7:2

    Article  PubMed Central  PubMed  Google Scholar 

  12. Fleenor BS, Marshall KD, Durrant JR, Lesniewski LA, Seals DR (2010) Arterial stiffening with ageing is associated with transforming growth factor β1-related changes in adventitial collagen: reversal by aerobic exercise. J Physiol 588:3971–3982

    Article  CAS  PubMed  Google Scholar 

  13. Grainger DJ (2004) Transforming growth factor β and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol 24:399–404

    Article  CAS  PubMed  Google Scholar 

  14. Hagan G, Pepke-Zaba J (2011) Pulmonary hypertension, nitric oxide and nitric oxide-releasing compounds. Expert Rev Respir Med 5:163–171

    Article  CAS  PubMed  Google Scholar 

  15. Hannan RL, Kourembanas S, Flanders KC, Rogelj SJ, Roberts AB, Faller DV, Klagsbrun M (1988) Endothelial cells synthesize basic fibroblast growth factor and transforming growth factor β. Growth Factors 1:7–17

    Article  CAS  PubMed  Google Scholar 

  16. Higashi Y, Kihara Y, Noma K (2012) Endothelial dysfunction and hypertension in aging. Hypertens Res 35:1039–1047

    Article  CAS  PubMed  Google Scholar 

  17. Hirakawa M, Oike M, Watanabe M, Karashima Y, Ito Y (2006) Pivotal role of integrin α5β1 in hypotonic stress-induced responses of human endothelium. FASEB J 20:1992–1999

    Article  CAS  PubMed  Google Scholar 

  18. Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    Article  CAS  PubMed  Google Scholar 

  19. Kim JH, Jain D, Tliba O, Yang B, Jester WF Jr, Panettieri RA Jr, Amrani Y, Pure E (2005) TGFβ potentiates airway smooth muscle responsiveness to bradykinin. Am J Physiol Lung Cell Mol Physiol 289:L511–L520

    Article  CAS  PubMed  Google Scholar 

  20. Kimura C, Cheng W, Hisadome K, Wang YP, Koyama T, Karashima Y, Oike M, Ito Y (2002) Superoxide anion impairs contractility in cultured aortic smooth muscle cells. Am J Physiol 283:H382–H390

    CAS  Google Scholar 

  21. Kimura C, Oike M, Ohnaka K, Nose Y, Ito Y (2004) Constitutive nitric oxide production in bovine aortic and brain microvascular endothelial cells: a comparative study. J Physiol 554:721–730

    Article  CAS  PubMed  Google Scholar 

  22. Kitamura N, Kaminuma O, Kobayashi N, Mori A (2008) A contraction assay system using established human bronchial smooth muscle cells. Int Arch Allergy Immunol 146(Suppl 1):36–39

    Article  PubMed  Google Scholar 

  23. Luscher TF, Boulanger CM, Dohi Y, Yang ZH (1992) Endothelium-derived contracting factors. Hypertension 19:117–130

    Article  CAS  PubMed  Google Scholar 

  24. Mallat Z, Gojova A, Marchiol-Fournigault C, Esposito B, Kamate C, Merval R, Fradelizi D, Tedgui A (2001) Inhibition of transforming growth factor β signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 89:930–934

    Article  CAS  PubMed  Google Scholar 

  25. McCaffrey TA (2000) TGFβ and TGFβ receptors in atherosclerosis. Cytokine Growth Factor Rev 11:103–114

    Article  CAS  PubMed  Google Scholar 

  26. Mii S, Ware JA, Kent KC (1993) Transforming growth factor β inhibits human vascular smooth muscle cell growth and migration. Surgery 114:464–470

    CAS  PubMed  Google Scholar 

  27. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  28. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  CAS  PubMed  Google Scholar 

  29. Norata GD, Callegari E, Marchesi M, Chiesa G, Eriksson P, Catapano AL (2005) High-density lipoproteins induce transforming growth factor-β2 expression in endothelial cells. Circulation 111:2805–2811

    Article  CAS  PubMed  Google Scholar 

  30. Oike M, Kimura C, Koyama T, Yoshikawa M, Ito Y (2000) Hypotonic stress-induced dual Ca2+ responses in bovine aortic endothelial cells. Am J Physiol 279:H630–H638

    CAS  Google Scholar 

  31. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    CAS  PubMed  Google Scholar 

  32. Palumbo R, Gaetano C, Antonini A, Pompilio G, Bracco E, Ronnstrand L, Heldin CH, Capogrossi MC (2002) Different effects of high and low shear stress on platelet-derived growth factor isoform release by endothelial cells: consequences for smooth muscle cell migration. Arterioscler Thromb Vasc Biol 22:405–411

    Article  CAS  PubMed  Google Scholar 

  33. Parekh AB (2011) Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 36:78–87

    Article  CAS  PubMed  Google Scholar 

  34. Powell RJ, Bhargava J, Basson MD, Sumpio BE (1998) Coculture conditions alter endothelial modulation of TGFβ1 activation and smooth muscle growth morphology. Am J Physiol 274:H642–H649

    CAS  PubMed  Google Scholar 

  35. Schiffrin EL (2005) Vascular endothelin in hypertension. Vasc Pharmacol 43:19–29

    Article  CAS  Google Scholar 

  36. Shanahan CM, Weissberg PL (1998) Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Arterioscler Thromb Vasc Biol 18:333–338

    Article  CAS  PubMed  Google Scholar 

  37. Shirahase H, Usui H, Kurahashi K, Fujiwara M, Fukui K (1988) Endothelium-dependent contraction induced by nicotine in isolated canine basilar artery—possible involvement of a thromboxane A2 (TXA2) like substance. Life Sci 42:437–445

    Article  CAS  PubMed  Google Scholar 

  38. Sinpitaksakul SN, Pimkhaokham A, Sanchavanakit N, Pavasant P (2008) TGFβ1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway. Biochem Biophys Res Commun 371:713–718

    Article  CAS  PubMed  Google Scholar 

  39. Soyombo AA, Thurston VJ, Newby AC (1993) Endothelial control of vascular smooth muscle proliferation in an organ culture of human saphenous vein. Eur Heart J 14:201–206

    CAS  PubMed  Google Scholar 

  40. Suwanabol PA, Seedial SM, Shi X, Zhang F, Yamanouchi D, Roenneburg D, Liu B, Kent KC (2012) Transforming growth factor β increases vascular smooth muscle cell proliferation through the Smad3 and extracellular signal-regulated kinase mitogen-activated protein kinases pathways. J Vasc Surg 56:446–454

    Article  PubMed Central  PubMed  Google Scholar 

  41. Tang Y, Yang X, Friesel RE, Vary CP, Liaw L (2011) Mechanisms of TGFβ -induced differentiation in human vascular smooth muscle cells. J Vasc Res 48:485–494

    Article  CAS  PubMed  Google Scholar 

  42. Toma I, McCaffrey TA (2012) Transforming growth factor β and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res 347:155–175

    Article  CAS  PubMed  Google Scholar 

  43. Vanhoutte PM (1997) Endothelial dysfunction and atherosclerosis. Eur Heart J 18:E19–E29

    Article  PubMed  Google Scholar 

  44. Vanhoutte PM, Boulanger CM, Mombouli JV (1995) Endothelium-derived relaxing factors and converting enzyme inhibition. Am J Cardiol 76:3E–12E

    Article  CAS  PubMed  Google Scholar 

  45. Yamamoto Y, Imaeda K, Suzuki H (1999) Endothelium-dependent hyperpolarization and intercellular electrical coupling in guinea-pig mesenteric arterioles. J Physiol 514:505–513

    Article  CAS  PubMed  Google Scholar 

  46. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  CAS  PubMed  Google Scholar 

  47. Yue TL, Wang XK, Olson B, Feuerstein G (1994) Interleukin-1β (IL1β) induces transforming growth factor β, (TGFβ1) production by rat aortic smooth muscle cells. Biochem Biophys Res Commun 204:1186–1192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Guy Droogmans for kindly reading the manuscript.

This work was supported by JSPS KAKENHI Grant Number 25670129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Oike.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, C., Konishi, S., Hasegawa, M. et al. Development of vascular smooth muscle contractility by endothelium-derived transforming growth factor β proteins. Pflugers Arch - Eur J Physiol 466, 369–380 (2014). https://doi.org/10.1007/s00424-013-1329-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1329-6

Keywords

Navigation