Skip to main content

Advertisement

Log in

Advanced glycation end products impair KCa3.1- and KCa2.3-mediated vasodilatation via oxidative stress in rat mesenteric arteries

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The present study was designed to investigate the role of advanced glycation end products (AGEs) in intermediate-conductance and small-conductance Ca2+-activated potassium channels (KCa3.1 and KCa2.3)-mediated relaxation in rat resistance arteries and the underlying mechanism. The endothelial function of mesenteric arteries was assessed with the use of wire myography. Expression levels of KCa3.1 and KCa2.3 were measured by using Western blot. Reactive oxygen species (ROS) were measured by using dihydroethidium and 2′, 7′-dichlorofluorescein diacetate. KCa3.1 and KCa2.3-mediated vasodilatation responses to acetylcholine and NS309 (opener of KCa3.1 and KCa2.3) were impaired by incubation of the third-order mesenteric arteries from normal rats with AGEs (200 μg ml−1 for 3 h). In cultured human umbilical vein endothelial cells (HUVECs), AGEs increased ROS level and decreased the protein expression of KCa3.1 and KCa2.3. Antioxidant alpha lipoic acid restored the impairment in both vasodilatation function and expression of KCa3.1 and KCa2.3. H2O2 could mimic the effect of AGEs on the protein expression of KCa3.1 and KCa2.3 in cultured HUVECs. These results demonstrate for the first time that AGEs impaired KCa3.1 and KCa2.3-mediated vasodilatation in rat mesenteric arteries via downregulation of both KCa3.1 and KCa2.3, in which the enhanced oxidative stress was involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A (2009) Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 89:27–71

    Article  CAS  PubMed  Google Scholar 

  2. Brakemeier S, Eichler I, Knorr A, Fassheber T, Köhler R, Hoyer J (2003) Modulation of Ca2+-activated K+ channel in renal artery endothelium in situ by nitric oxide and reactive oxygen species. Kidney Int 64:199–207

    Article  CAS  PubMed  Google Scholar 

  3. Brähler S, Kaistha A, Schmidt VJ, Wölfle SE, Busch C, Kaistha BP, Kacik M, Hasenau AL, Grgic I, Si H, Bond CT, Adelman JP, Wulff H, de Wit C, Hoyer J, Köhler R (2009) Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation 119:2323–2332

    Article  PubMed  Google Scholar 

  4. Brondum E, Kold-Petersen H, Simonsen U, Aalkjaer C (2009) NS309 restores EDHF-type relaxation in mesenteric small arteries from type 2 diabetic ZDF rats. Br J Pharmacol 159:154–165

    Article  PubMed  Google Scholar 

  5. Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23:374–380

    Article  CAS  PubMed  Google Scholar 

  6. Bychkov R, Pieper K, Ried C, Milosheva M, Bychkov E, Luft FC, Haller H (1999) Hydrogen peroxide, potassium currents, and membrane potential in human endothelial cells. Circulation 99:1719–1725

    Article  CAS  PubMed  Google Scholar 

  7. Burnham MP, Johnson IT, Weston AH (2006) Impaired small conductance Ca2+-activated K+ channel-dependent EDHF responses in type II diabetic ZDF rats. Br J Pharmacol 148:434–441

    Article  CAS  PubMed  Google Scholar 

  8. Cai S, Sauve R (1997) Effects of thiol-modifying agents on a KCa channel of intermediate conductance in bovine aortic endothelial cells. J Membr Biol 158:147–158

    Article  CAS  PubMed  Google Scholar 

  9. Ding H, Hashem M, Wiehler WB, Lau W, Martin J, Reid J, Triggle C (2005) Endothelial dysfunction in the streptozotocin-induced diabetic apoE-deficient mouse. Br J Pharmacol 146:1110–1118

    Article  CAS  PubMed  Google Scholar 

  10. Dora KA, Gallagher NT, McNeish A, Garland CJ (2008) Modulation of endothelial cell KCa3.1-channels during EDHF signaling in mesenteric resistance arteries. Circ Res 102:1247–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Duprat F, Guillemare E, Romey G, Fink M, Lesage F, Lazdunski M, Honore E (1995) Susceptibility of cloned K+ channels to reactive oxygen species. Proc Natl Acad Sci U S A 92:11796–11800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Edwards G, Feletou M, Weston AH (2010) Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Pflugers Arch 459:863–879

    Article  CAS  PubMed  Google Scholar 

  13. Eichler I, Wibawa J, Grgic I, Knorr A, Brakemeier S, Pries AR, Hoyer J, Köhler R (2003) Selective blockade of endothelial Ca2+-activated small- and intermediate-conductance K+-channels suppresses EDHF-mediated vasodilation. Br J Pharmacol 138:594–601

    Article  CAS  PubMed  Google Scholar 

  14. Endemann DH, Schiffrin EL (2004) Nitric oxide, oxidative excess, and vascular complications of diabetes mellitus. Curr Hypertens Rep 6:85–89

    Article  PubMed  Google Scholar 

  15. Félétou M, Vanhoutte PM (2009) EDHF: an update. Clin Sci (Lond) 117:139–155

    Article  Google Scholar 

  16. Gao X, Zhang H, Schmidt AM, Zhang C (2008) AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 295:H491–H498

    Article  CAS  PubMed  Google Scholar 

  17. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycaton end products: sparking the development of diabetic vascular injury. Circulation 114:597–605

    Article  CAS  PubMed  Google Scholar 

  18. Grgic I, Kaistha BP, Hoyer J, Kohler R (2009) Endothelial Ca2+ -activated K+ channels in normal and impaired EDHF-dilator responses-relevance to cardiovascular pathologies and drug discovery. Br J Pharmacol 157:509–526

    Article  CAS  PubMed  Google Scholar 

  19. Hartge MM, Kintscher U, Unger T (2006) Endothelial dysfunction and its role in diabetic vascular disease. Endocrinol Metab Clin North Am 35:551–560

    Article  CAS  PubMed  Google Scholar 

  20. He M, Siow RC, Sugden D, Gao L, Cheng X, Mann GE (2011) Induction of HO-1 and redox signaling in endothelial cells by advanced glycation end products: a role for Nrf2 in vascular protection in diabetes. Nutr Metab Cardiovasc Dis 21:277–285

    CAS  PubMed  Google Scholar 

  21. Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C24

    CAS  PubMed  Google Scholar 

  22. Lee JJ, Hsiao CC, Yang IH, Chou MH, Wu CL, Wei YC, Chen CH, Chuang JH (2012) High-mobility group box 1 protein is implicated in advanced glycation end products-induced vascular endothelial growth factor A production in the rat retinal ganglion cell line RGC-5. Mol Vis 18:838–850

    CAS  PubMed  Google Scholar 

  23. Leo CH, Hart JL, Woodman OL (2011) Impairment of both nitric oxide-mediated and EDHF-type relaxation in small mesenteric arteries from rats with streptozotocin- induced diabetes. Br J Pharmacol 162:365–377

    Article  CAS  PubMed  Google Scholar 

  24. Li R, McCourt P, Schledzewski K, Goerdt S, Moldenhauer G, Liu X, Smedsrød B, Sørensen KK (2009) Endocytosis of advanced glycation end-products in bovine choriocapillaris endothelial cells. Microcirculation 16:640–655

    Article  CAS  PubMed  Google Scholar 

  25. Mamputu JC, Renier G (2004) Advanced glycation end-products increase monocyte adhesion to retinal endothelial cells through vascular endothelial growth factor-induced ICAM-1 expression: inhibitory effect of antioxidants. J Leukoc Biol 75:1062–1069

    Article  CAS  PubMed  Google Scholar 

  26. McPherson GA (1992) Assessing vascular reactivity of arteries in the small vessel myograph. Clin Exp Pharmacol Physiol 19:815–825

    Article  CAS  PubMed  Google Scholar 

  27. Morikawa K, Matoba T, Kubota H, Hatanaka M, Fujiki T, Takahashi S, Takeshita A, Shimokawa H (2005) Influence of diabetes mellitus, hypercholesterolemia, and their combination on EDHF-mediated responses in mice. J Cardiovasc Pharmacol 45:485–490

    Article  CAS  PubMed  Google Scholar 

  28. Morimura K, Yamamura H, Ohya S, Imaizumi Y (2006) Voltage-dependent Ca2+-channel block by openers of intermediate and small conductance Ca2+-activated K+ channels in urinary bladder smooth muscle cells. J Pharmacol Sci 100:237–241

    Article  CAS  PubMed  Google Scholar 

  29. Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M (2009) Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 11:3071–3109

    Article  CAS  PubMed  Google Scholar 

  30. Rahman S, Rahman T, Ismail AA, Rashid AR (2007) Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab 9:767–780

    Article  CAS  PubMed  Google Scholar 

  31. Sena CM, Matafome P, Crisóstomo J, Rodrigues L, Fernandes R, Pereira P, Seiça RM (2012) Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res 65:497–506

    Article  CAS  PubMed  Google Scholar 

  32. Sheng JZ, Ella S, Davis MJ, Hill MA, Braun AP (2009) Openers of SKCa and IKCa channels enhance agonist-evoked endothelial nitric oxide synthesis and arteriolar vasodilation. FASEB J 23:1138–1145

    Article  CAS  PubMed  Google Scholar 

  33. Si H, Heyken WT, Wölfle SE, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G, Maier T, Gross V, Bader M, de Wit C, Hoyer J, Köhler R (2006) Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ Res 99:537–544

    Article  CAS  PubMed  Google Scholar 

  34. Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT (2003) Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ Res 93:124–131

    Article  CAS  PubMed  Google Scholar 

  35. Tokube K, Kiyosue T, Arita M (1996) Openings of cardiac KATP channel by oxygen free radicals produced by xanthine oxidase reaction. Am J Physiol 27:H478–H489

    Google Scholar 

  36. Vanhoutte PM, Shimokawa H, Tang EHC, Feletou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol 196:193–222

    Article  CAS  Google Scholar 

  37. Vlassara H, Uribarri J, Cai W, Striker G (2008) Advanced glycation end product homeostasis: exogenous oxidants and innate defenses. Ann NY Acad Sci 1126:46–52

    Article  CAS  PubMed  Google Scholar 

  38. Wang CY, Liu HJ, Chen HJ, Lin YC, Wang HH, Hung TC, Yeh HI (2011) AGE-BSA down-regulates endothelial connexin43 gap junctions. BMC Cell Biol 12:19. doi:10.1186/1471-2121-12-19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Weston AH, Absi M, Harno E, Geraghty AR, Ward DT, Ruat M, Dodd RH, Dauban P, Edwards G (2008) The expression and function of Ca2+-sensing receptors in rat mesenteric artery; comparative studies using a model of type II diabetes. Br J Pharmacol 154:652–662

    Article  CAS  PubMed  Google Scholar 

  40. Wigg SJ, Tare M, Tonta MA, O’Brien RC, Meredith IT, Parkington HC (2001) Comparison of effects of diabetes mellitus on an EDHF dependent and an EDHF- independent artery. Am J Physiol Heart Circ Physiol 281:H232–H240

    CAS  PubMed  Google Scholar 

  41. Wulff H, Castle NA (2010) Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 3:385–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yamagishi S, Nakamura K, Imaizumi T (2005) Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diabetes Rev 1:93–106

    Article  CAS  PubMed  Google Scholar 

  43. Zhao LM, Zhang W, Wang LP, Li GR, Deng XL (2012) Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels. Pflugers Arch 464:613–621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant number 81100231, 81170137 and 81200097) and the Natural Science Foundation of Shaanxi Province (grant number 2011JQ4021). The authors are grateful for substantial support from Professor Lang-Chong He, School of Medicine, Xi’an Jiaotong University.

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Ling Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, LM., Wang, Y., Ma, XZ. et al. Advanced glycation end products impair KCa3.1- and KCa2.3-mediated vasodilatation via oxidative stress in rat mesenteric arteries. Pflugers Arch - Eur J Physiol 466, 307–317 (2014). https://doi.org/10.1007/s00424-013-1324-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1324-y

Keywords

Navigation