Skip to main content
Log in

Small-molecule fluorophores and fluorescent probes for bioimaging

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Fluorescent compounds based on synthetic small molecules are powerful tools to visualize biological events in living cells and organisms. Ever since the discovery of organic fluorescent compounds in the late nineteenth century, efforts have been made to “see” the behaviors of specific biomolecules in living systems by using these dyes as labels. Also, following the development of fluorescent Ca2+ indicators in the 1980s, many fluorescent probes or biosensors, which are defined as molecules that show a change in fluorescence properties in the presence of their target molecule, have been reported and applied in biological research. Today, a variety of probes are available that target metal ions, pH, enzyme activities, and signaling molecules. In this review, we first consider the history of organic fluorescent molecules and discuss their utility for labeling biomolecules and staining cells. Then, we review recent progress in small-molecule fluorescent probes for metal ions and reactive oxygen species, focusing on representative work in each category. Finally, we briefly discuss attempts to create novel kinds of probes, including hybrids of small molecules and genetically encoded proteins, with the potential to overcome some of the limitations of current probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abo M, Urano Y, Hanaoka K, Terai T, Komatsu T, Nagano T (2011) Development of a highly sensitive fluorescence probe for hydrogen peroxide. J Am Chem Soc 133:10629–10637

    Article  PubMed  CAS  Google Scholar 

  2. Ahn Y-H, Lee J-S, Chang Y-T (2007) Combinatorial rosamine library and application to in vivo glutathione probe. J Am Chem Soc 129:4510–4511

    Article  PubMed  CAS  Google Scholar 

  3. Baek NY, Heo CH, Lim CS, Masanta G, Cho BR, Kim HM (2012) A highly sensitive two-photon fluorescent probe for mitochondrial zinc ions in living tissue. Chem Commun 48:4546–4548

    Article  CAS  Google Scholar 

  4. Baeyer A (1871) Ueber eine neue Klasse von Farbstoffen. Ber Dtsch Chem Ges 4:555–558

    Article  Google Scholar 

  5. Baker MD, Wood JN (2001) Involvement of Na+ channels in pain pathways. Trends Pharmacol Sci 22:27–31

    Article  PubMed  CAS  Google Scholar 

  6. Ballou B, Ernst LA, Waggoner AS (2005) Fluorescence imaging of tumors in vivo. Curr Med Chem 12:795–805

    Article  PubMed  CAS  Google Scholar 

  7. Baruch A, Jeffery DA, Bogyo M (2004) Enzyme activity—it’s all about image. Trends Cell Biol 14:29–35

    Article  PubMed  CAS  Google Scholar 

  8. Belov VN, Wurm CA, Boyarskiy VP, Jakobs S, Hell SW (2010) Rhodamines NN: a novel class of caged fluorescent dyes. Angew Chem Int Ed 49:3520–3523

    Article  CAS  Google Scholar 

  9. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    Article  PubMed  CAS  Google Scholar 

  10. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  PubMed  CAS  Google Scholar 

  11. Brancaleon L, Durkin AJ, Tu JH, Menaker G, Fallon GD, Kollias N (2001) In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem Photobiol 73:178–183

    Article  PubMed  CAS  Google Scholar 

  12. Brookner CK, Follen M, Boiko I, Galvan J, Thomsen S, Malpica A, Suzuki S, Lotan R, Richards-Kortum R (2000) Autofluorescence patterns in short-term cultures of normal cervical tissue. Photochem Photobiol 71:730–736

    Article  PubMed  CAS  Google Scholar 

  13. Bünzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110:2729–2755

    Article  PubMed  CAS  Google Scholar 

  14. Burdette SC, Walkup GK, Springler B, Tsien RY, Lippard SJ (2001) Fluorescent sensors for Zn2+ based on fluorescein platform: synthesis, properties and intracellular distribution. J Am Chem Soc 123:7831–7841

    Article  PubMed  CAS  Google Scholar 

  15. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signaling. Nat Rev Neurosci 8:182–193

    Article  PubMed  CAS  Google Scholar 

  16. Callan JF, de Silva AP, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551–8588

    Article  CAS  Google Scholar 

  17. Camakaris J, Voskoboinik I, Mercer JF (1999) Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261:225–232

    Article  PubMed  CAS  Google Scholar 

  18. Ceresole M (1888) Production of new red coloring-matter. US Patent 377,349

  19. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasherf DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  20. Chang MCY, Pralle A, Isacoff EY, Chang CJ (2004) A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J Am Chem Soc 126:15392–15393

    Article  PubMed  CAS  Google Scholar 

  21. Chen X, Conti PS, Moats RA (2004) In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts. Cancer Res 64:8009–8014

    Article  PubMed  CAS  Google Scholar 

  22. Chen X, Lee K-A, Ha E-M, Lee KM, Seo YY, Choi HK, Kim HN, Kim MJ, Cho C-S, Lee SY, Lee W-J, Yoon J (2011) A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production. Chem Commun 47:4373–4375

    Article  CAS  Google Scholar 

  23. Chen S, Lu J, Sun C, Ma H (2010) A highly specific ferrocene-based fluorescent probe for hypochlorous acid and its application to cell imaging. Analyst 135:577–582

    Article  PubMed  CAS  Google Scholar 

  24. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956

    Article  PubMed  CAS  Google Scholar 

  25. Chen X, Zhong Z, Xu Z, Chen L, Wang Y (2010) 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res 44:587–604

    Article  PubMed  CAS  Google Scholar 

  26. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  PubMed  CAS  Google Scholar 

  27. Conley NR, Biteen JS, Moerner WE (2008) Cy3–Cy5 covalent heterodimers for single-molecule photoswitching. J Phys Chem B 112:11878–11880

    Article  PubMed  CAS  Google Scholar 

  28. Coons AH, Creech HJ, Jones RN, Berliner E (1942) The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol 45:159–170

    CAS  Google Scholar 

  29. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  PubMed  CAS  Google Scholar 

  30. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JP, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Google Scholar 

  31. de Silva AP, Rupasinghe RAD (1985) A new class of flurescent pH indicators based on photo-induced electron transfer. J Chem Soc Chem Commun (23):1669–1670

  32. Dodani SC, Domaille DW, Nam CI, Miller EW, Finney LA, Vogt S, Chang CJ (2011) Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy. Proc Natl Acad Sci USA 108:5980–5985

    Article  PubMed  CAS  Google Scholar 

  33. Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4:168–175

    Article  PubMed  CAS  Google Scholar 

  34. Ducibella T, Fissore R (2008) The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol 315:257–279

    Article  PubMed  CAS  Google Scholar 

  35. Egawa T, Hanaoka K, Koide Y, Ujita S, Takahashi N, Ikegaya Y, Matsuki N, Terai T, Ueno T, Komatsu T, Nagano T (2011) Development of a far-red to near-infrared fluorescence probe for calcium ion and its application to multicolor neuronal imaging. J Am Chem Soc 133:14157–14159

    Article  PubMed  CAS  Google Scholar 

  36. Egawa T, Koide Y, Hanaoka K, Komatsu T, Terai T, Nagano T (2011) Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region. Chem Commun 47:4162–4164

    Article  CAS  Google Scholar 

  37. Ellinger P (1940) Fluorescence microscope in biology. Biol Rev 15:323–347

    Article  Google Scholar 

  38. Eng J, Lynch RM, Balaban RS (1989) Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys J 55:621–630

    Article  PubMed  CAS  Google Scholar 

  39. Fluhler E, Burnham VG, Loew LM (1985) Spectra, membrane binding, and potentiometric responses of new charge shift probes. Biochem 24:5749–5755

    Article  CAS  Google Scholar 

  40. Foemming MK, Sames D (2007) Harnessing functional plasticity of enzymes: a fluorogenic probe for imaging 17α-HSD10 dehydrogenase, an enzyme involved in Alzheimer’s and Parkinson’s diseases. J Am Chem Soc 129:14518–14522

    Article  CAS  Google Scholar 

  41. Fölling J, Belov V, Kunetsky R, Medda R, Schönle A, Egner A, Eggeling C, Bossi B, Hell SW (2007) Photochromic rhodamines provide nanoscopy with optical sectioning. Angew Chem Int Ed 46:6266–6270

    Article  CAS  Google Scholar 

  42. Förster T (1959) Transfer mechanism of electronic excitation. Discuss Faraday Soc 27:7–17

    Article  Google Scholar 

  43. Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE (1987) A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods 20:91–103

    Article  PubMed  CAS  Google Scholar 

  44. Gee KR, Brown KA, Chen W-NU, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 27:97–106

    Article  PubMed  CAS  Google Scholar 

  45. Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80

    Article  PubMed  CAS  Google Scholar 

  46. Gomes A, Fernandes E, Lima JLFC (2006) Use of fluorescence probes for detection of reactive nitrogen species: a review. J Fluoresc 16:119–139

    Article  PubMed  CAS  Google Scholar 

  47. Gonçalves MST (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  PubMed  CAS  Google Scholar 

  48. González JE, Tsien RY (1997) Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. Chem Biol 4:269–277

    Article  PubMed  Google Scholar 

  49. Grinvald A, Fine A, Farber IC, Hildesheim R (1983) Fluorescence monitoring of electrical responses from small neurons and their processes. Biophys J 42:195–198

    Article  PubMed  CAS  Google Scholar 

  50. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  51. Hawe A, Sutter M, Jiskoot W (2007) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25:1487–1499

    Article  CAS  Google Scholar 

  52. He H, Mortellaro MA, Leiner MJP, Fraatz RJ, Tusa JK (2003) A fluorescent sensor with high selectivity and sensitivity for potassium in water. J Am Chem Soc 125:1468–1469

    Article  PubMed  CAS  Google Scholar 

  53. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48:6903–6908

    Article  CAS  Google Scholar 

  54. Herschel Sir JFW (1845) On a case of superficial colour presented by a homogeneous liquid internally colorless. Phil Trans Roy Soc London 135:143–145

    Article  Google Scholar 

  55. Hirabayashi K, Hanaoka K, Shimonishi M, Terai T, Komatsu T, Ueno T, Nagano T (2011) Selective two-step labeling of proteins with an off/on fluorescent probe. Chem Eur J 17:14763–14771

    Article  PubMed  CAS  Google Scholar 

  56. Hirano T, Kikuchi K, Urano Y, Nagano T (2002) Improvement and biological applications of fluorescent probes for zinc, ZnAFs. J Am Chem Soc 124:6555–6562

    Article  PubMed  CAS  Google Scholar 

  57. Hirata T, Terai T, Komatsu T, Hanaoka K, Nagano T (2011) Development of a potassium ion-selective fluorescent sensor based on 3-styrylated BODIPY. Bioorg Med Chem Lett 21:6090–6093

    Article  PubMed  CAS  Google Scholar 

  58. Hof M, Hutterer R, Fidler V (eds) (2010) Fluorescence spectroscopy in biology: advanced methods and their applications to membranes, proteins, DNA, and cells. Springer, Berlin

    Google Scholar 

  59. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    Article  PubMed  CAS  Google Scholar 

  60. Im C-N, Kang N-Y, Ha H-H, Bi X, Lee JJ, Park S-J, Lee SY, Vendrell M, Kim YK, Lee J-S, Li J, Y-H FB, Ng H-H, Yun S-W, Chang Y-T (2010) A fluorescent rosamine compound selectively stains pluripotent stem cells. Angew Chem Int Ed 49:7497–7500

    Article  CAS  Google Scholar 

  61. Izumi S, Urano Y, Hanaoka K, Terai T, Nagano T (2009) A simple and effective strategy to increase the sensitivity of fluorescence probes in living cells. J Am Chem Soc 131:10189–10200

    Article  PubMed  CAS  Google Scholar 

  62. Jiang P, Guo Z (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248:205–229

    Article  CAS  Google Scholar 

  63. Johnson I, Spence MTZ (eds) (2010) The molecular probes handbook, 11th edn. Life Technologies, Carlsbad

    Google Scholar 

  64. Juskowiak B (2011) Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem 399:3157–3176

    Article  PubMed  CAS  Google Scholar 

  65. Kamiya M, Asanuma D, Kuranaga E, Takeishi A, Sakabe M, Miura M, Nagano T, Urano Y (2011) β-Galactosidase fluorescence probe with improved cellular accumulation based on a spirocyclized rhodol scaffold. J Am Chem Soc 133:12960–12963

    Article  PubMed  CAS  Google Scholar 

  66. Kamiya M, Johnsson K (2010) Localizable and highly sensitive calcium indicator based on a BODIPY fluorophore. Anal Chem 82:6472–6479

    Article  PubMed  CAS  Google Scholar 

  67. Kapuscinski J (1995) DAPI: a DNA-specific fluorescent probe. Biotech Histochem 70:220–233

    Article  PubMed  CAS  Google Scholar 

  68. Kawazoe Y, Shimogawa H, Sato A, Uesugi M (2011) A mitochondrial surface-specific fluorescent probe activated by bioconversion. Angew Chem Int Ed 50:5478–5481

    Article  CAS  Google Scholar 

  69. Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, Li C (2003) Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res 63:7870–7875

    PubMed  CAS  Google Scholar 

  70. Kenmoku S, Urano Y, Kojima H, Nagano T (2007) Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J Am Chem Soc 129:7313–7318

    Article  PubMed  CAS  Google Scholar 

  71. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    Article  PubMed  CAS  Google Scholar 

  72. Kikuchi K, Komatsu K, Nagano T (2004) Zinc sensing for cellular application. Curr Opin Chem Biol 8:182–191

    Article  PubMed  CAS  Google Scholar 

  73. Kim HM, Cho BR (2009) Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues. Acc Chem Res 42:863–872

    Article  PubMed  CAS  Google Scholar 

  74. Kim HM, Kim BR, Hong JH, Park J-S, Lee KJ, Cho BR (2007) A two-photon fluorescent probe for calcium waves in living tissue. Angew Chem Int Ed 46:7445–7448

    Article  CAS  Google Scholar 

  75. Kim E, Koh M, Ryu J, Park SB (2008) Combinatorial discovery of full-color-tunable emissive fluorescent probes using a single core skeleton, 1,2-dihydropyrrolo[3,4-β]indolizin-3-one. J Am Chem Soc 130:12206–12207

    Article  PubMed  CAS  Google Scholar 

  76. Kim PKM, Zamora R, Petrosko P, Billiar TR (2001) The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol 1:1421–1441

    Article  PubMed  CAS  Google Scholar 

  77. Kiyose K, Kojima H, Nagano T (2008) Functional near-infrared fluorescent probes. Chem Asian J 3:506–515

    Article  CAS  Google Scholar 

  78. Koide Y, Urano Y, Hanaoka K, Piao W, Kusakabe M, Saito N, Terai T, Okabe T, Nagano T (2012) Development of NIR fluorescent dyes based on Si-rhodamine for in vivo imaging. J Am Chem Soc 134:5029–5031

    Article  PubMed  CAS  Google Scholar 

  79. Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T (2011) Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer. ACS Chem Biol 6:600–608

    Article  PubMed  CAS  Google Scholar 

  80. Koide Y, Urano Y, Kenmoku S, Kojima H, Nagano T (2007) Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells. J Am Chem Soc 129:10324–10325

    Article  PubMed  CAS  Google Scholar 

  81. Kooy NW, Royall JA, Ischiropoulos H, Beckman JS (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 16:149–156

    Article  PubMed  CAS  Google Scholar 

  82. Krishna TR, Parent M, Werts MHV, Moreaux L, Gmouh S, Charpak S, Caminade A-M, Majoral J-P, Blanchard-Desce M (2006) Water-soluble dendrimeric two-photon tracers for in vivo imaging. Angew Chem Int Ed 45:4645–4648

    Article  CAS  Google Scholar 

  83. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  84. Lamy CM, Sallin O, Loussert C, Chatton J-Y (2012) Sodium sensing in neurons with a dendrimer-based nanoprobe. ACS Nano 6:1176–1187

    Article  PubMed  CAS  Google Scholar 

  85. Latt SA, Stetten G (1976) Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J Histochem Cytochem 24:24–33

    Article  PubMed  CAS  Google Scholar 

  86. Lazarides T, McCormick TM, Wilson KC, Lee S, McCamant DW, Eisenberg R (2011) Sensitizing the sensitizer: the synthesis and photophysical study of Bodipy-Pt(II)(diimine)(dithiolate) conjugates. J Am Chem Soc 133:350–364

    Article  PubMed  CAS  Google Scholar 

  87. Le Guennic B, Maurya O, Jacquemin D (2012) Aza-boron-dipyrromethene dyes: TD-DFT benchmarks, spectral analysis and design of original near-IR structures. Phys Chem Chem Phys 14:157–164

    Article  PubMed  CAS  Google Scholar 

  88. Lee J-S, Kim HK, Feng S, Vendrell M, Chang Y-T (2011) Accelerating fluorescent sensor discovery: unbiased screening of a diversity-oriented BODIPY library. Chem Commun 47:2339–2341

    Article  CAS  Google Scholar 

  89. Lee HD, Lord SJ, Iwanaga S, Zhan K, Xie H, Williams JC, Wang H, Bowman GR, Goley ED, Shapiro L, Twieg RJ, Rao J, Moerner WE (2010) Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. J Am Chem Soc 132:15099–15101

    Article  PubMed  CAS  Google Scholar 

  90. Li F, Yang H, Hu H (2010) Luminescent rare earth complexes as chemosensors and bioimaging probes. In: Huang C (ed) Rare earth coordination chemistry: fundamentals and applications. Wiley (Asia), Singapore, pp 529–570

    Chapter  Google Scholar 

  91. Lim MH, Wong BA, Pitcock WH Jr, Mokshagundam D, Baik M-H, Lippard SJ (2006) Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes. J Am Chem Soc 128:14364–14373

    Article  PubMed  CAS  Google Scholar 

  92. Lippert AR, van de Bittner GC, Chang CJ (2011) Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc Chem Res 44:793–804

    Article  PubMed  CAS  Google Scholar 

  93. Lo LC, Chu CY (2003) Development of highly selective and sensitive probes for hydrogen peroxide. Chem Commun (21):2728–2729

  94. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RB, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  PubMed  CAS  Google Scholar 

  95. Losonczy A, Makara JK, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452:436–441

    Article  PubMed  CAS  Google Scholar 

  96. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932

    Article  PubMed  CAS  Google Scholar 

  97. Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:7127–7138

    Article  PubMed  CAS  Google Scholar 

  98. Ma Q, Su X (2011) Recent advances and applications in QDs-based sensors. Analyst 136:4883–4893

    Article  PubMed  CAS  Google Scholar 

  99. Maçôas E, Marcelo G, Pinto S, Cañeque T, Cuadro AM, Vaquerob JJ, Martinhoa JMG (2011) A V-shaped cationic dye for nonlinear optical bioimaging. Chem Commun 47:7374–7376

    Article  CAS  Google Scholar 

  100. Maeda H, Fukuyasu Y, Yoshida S, Fukuda M, Saeki K, Matsuno H, Yamauchi Y, Yoshida K, Hirata K, Miyamoto K (2004) Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angew Chem Int Ed 43:2389–2391

    Article  CAS  Google Scholar 

  101. Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angew Chem Int Ed Engl 32:1111–1121

    Article  Google Scholar 

  102. Marks KM, Rosinov M, Nolan GP (2004) In vivo targeting of organic calcium sensors via genetically selected peptides. Chem Biol 11:347–356

    Article  PubMed  CAS  Google Scholar 

  103. Martin BR, Giepmans BNG, Adams SR, Tsien RY (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23:1308–1314

    Google Scholar 

  104. Matsui A, Umezawa K, Shindo Y, Fujii T, Citterio D, Oka K, Suzuki K (2011) A near-infrared fluorescent calcium probe: a new tool for intracellular multicolour Ca2+ imaging. Chem Commun 47:10407–10409

    Article  CAS  Google Scholar 

  105. Meier SD, Kovalchuk Y, Rose CR (2006) Properties of the new fluorescent Na+ indicator CoroNa Green: comparison with SBFI and confocal Na+ imaging. J Neurosci Methods 155:251–259

    Article  PubMed  CAS  Google Scholar 

  106. Miller EW, Lin JY, Frady EP, Steinbach PA, Kristan WB Jr, Tsien RY (2012) Optically monitoring voltage in neurons by photoinduced electron transfer through molecular wires. Proc Natl Acad Sci USA 109:2114–2119

    Article  PubMed  CAS  Google Scholar 

  107. Minta A, Kao JPY, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8181–8178

    Google Scholar 

  108. Minta A, Tsien RY (1989) Fluorescent indicators for cytosolic sodium. J Biol Chem 264:19449–19457

    PubMed  CAS  Google Scholar 

  109. Miyawaki A (2011) Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu Rev Biochem 80:357–373

    Article  PubMed  CAS  Google Scholar 

  110. Mizukami S, Watanabe S, Hori Y, Kikuchi K (2009) Covalent protein labeling based on noncatalytic β-lactamase and a designed FRET substrate. J Am Chem Soc 131:5016–5017

    Article  PubMed  CAS  Google Scholar 

  111. Muyskens M (2006) The fluorescence of Lignum nephriticum: a flash back to the past and a simple demonstration of natural substance fluorescence. J Chem Educ 83:765–768

    Article  CAS  Google Scholar 

  112. Myochin T, Kiyose K, Hanaoka K, Kojima H, Terai T, Nagano T (2011) Rational design of ratiometric near-infrared fluorescent pH probes with various pK a values, based on aminocyanine. J Am Chem Soc 133:3401–3409

    Article  PubMed  CAS  Google Scholar 

  113. Nagano T (2009) Bioimaging probes for reactive oxygen species and reactive nitrogen species. J Clin Biochem Nutr 45:111–124

    Article  PubMed  CAS  Google Scholar 

  114. Namkung W, Padmawar P, Mills AD, Verkman AS (2008) Cell-based fluorescence screen for K+ channels and transporters using an extracellular triazacryptand-based K+ sensor. J Am Chem Soc 130:7794–7795

    Article  PubMed  CAS  Google Scholar 

  115. Niu Y, Peng Q, Deng C, Gao X, Shuai Z (2010) Theory of excited state decays and optical spectra: application to polyatomic molecules. J Phys Chem A 114:7817–7831

    Article  PubMed  CAS  Google Scholar 

  116. Nolan EM, Lippard SJ (2009) Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry. Acc Chem Res 42:193–203

    Article  PubMed  CAS  Google Scholar 

  117. Ogawa M, Kosaka N, Choyke PL, Kobayashi H (2009) In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res 69:1268–1272

    Article  PubMed  CAS  Google Scholar 

  118. Ojida A, Honda K, Shinmi D, Kiyonaka S, Mori Y, Hamachi I (2006) Oligo-Asp tag/Zn(II) complex probe as a new pair for labeling and fluorescence imaging of proteins. J Am Chem Soc 128:10452–10459

    Article  PubMed  CAS  Google Scholar 

  119. Padmawar P, Yao X, Bloch O, Manley GT, Verkman AS (2005) K+ waves in brain cortex visualized using a long wavelength K+- sensing fluorescent indicator. Nat Methods 2:825–827

    Google Scholar 

  120. Razgulin A, Ma N, Rao J (2011) Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chem Soc Rev 40:4186–4216

    Article  PubMed  CAS  Google Scholar 

  121. Rehm D, Weller A (1970) Kinetics of fluorescence quenching by electron and H-atom transfer. Israel J Chem 8:259–271

    CAS  Google Scholar 

  122. Reinert KC, Dunbar RL, Gao W, Chen G, Ebner TJ (2004) Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo. J Neurophysiol 92:199–211

    Article  PubMed  CAS  Google Scholar 

  123. Robinson D, Besley NA, O’Shea P, Hirst JD (2011) Di-8-ANEPPS emission spectra in phospholipid/cholesterol membranes: a theoretical study. J Phys Chem B 115:4160–4167

    Article  PubMed  CAS  Google Scholar 

  124. Rosania GR, Lee JW, Ding L, Yoon H-S, Chang Y-T (2003) Combinatorial approach to organelle-targeted fluorescent library based on the styryl scaffold. J Am Chem Soc 125:1130–1131

    Article  PubMed  CAS  Google Scholar 

  125. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  PubMed  CAS  Google Scholar 

  126. Sakabe M, Asanuma D, Kamiya M, Iwatate RJ, Hanaoka K, Terai T, Nagano T, Urano Y (2013) Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. J Am Chem Soc 135:409–414

    Article  PubMed  CAS  Google Scholar 

  127. Samanta A, Vendrell M, Dasa R, Chang Y-T (2010) Development of photostable near-infrared cyanine dyes. Chem Commun 46:7406–7408

    Article  CAS  Google Scholar 

  128. Shen Z, Lu Z, Chhatbar PY, O’Herron P, Kara P (2012) An artery-specific fluorescent dye for studying neurovascular coupling. Nat Methods 9:273–276

    Article  PubMed  CAS  Google Scholar 

  129. Shepherd J, Hilderbrand SA, Waterman P, Heinecke JW, Weissleder R, Libby P (2007) A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem Biol 14:1221–1231

    Article  PubMed  CAS  Google Scholar 

  130. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishman M (2000) Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52:557–593

    PubMed  CAS  Google Scholar 

  131. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  PubMed  CAS  Google Scholar 

  132. Shults MD, Janes KA, Lauffenburger DA, Imperiali B (2005) A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates. Nat Methods 2:277–284

    Article  PubMed  CAS  Google Scholar 

  133. Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam M (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci USA 104:10494–10499

    Article  Google Scholar 

  134. Somers RC, Bawendi MG, Nocera DG (2007) CdSe nanocrystal based chem-/bio- sensors. Chem Soc Rev 36:579–591

    Article  PubMed  CAS  Google Scholar 

  135. Srikun D, Albers AE, Nam CI, Iavarone AT, Chang CJ (2010) Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling. J Am Chem Soc 132:4455–4465

    Article  PubMed  CAS  Google Scholar 

  136. Stokes GG (1845) On the change of refrangibility of light. Phil Trans Roy Soc London 142:463–562

    Google Scholar 

  137. Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79:1089–1125

    PubMed  CAS  Google Scholar 

  138. Terai T, Kikuchi K, Urano Y, Kojima H, Nagano T (2012) A long-lived luminescent probe to sensitively detect arylamine N-acetyltransferase (NAT) activity of cells. Chem Commun 48:2234–2236

    Article  CAS  Google Scholar 

  139. Terai T, Nagano T (2008) Fluorescent probes for bioimaging applications. Curr Opin Chem Biol 12:515–521

    Article  PubMed  CAS  Google Scholar 

  140. Tomat E, Nolan EM, Jaworski J, Lippard SJ (2008) Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. J Am Chem Soc 130:15776–15777

    Article  PubMed  CAS  Google Scholar 

  141. Tour O, Adams SR, Kerr RA, Meijer RM, Sejnowski TJ, Tsien RW, Tsien RY (2007) Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator. Nat Chem Biol 3:423–431

    Article  PubMed  CAS  Google Scholar 

  142. Toutchkine A, Kraynov V, Hahn K (2003) Solvent-sensitive dyes to report protein conformational changes in living cells. J Am Chem Soc 125:4132–4145

    Article  PubMed  CAS  Google Scholar 

  143. Trapani V, Farruggia G, Marraccini C, Iotti S, Cittadinia A, Wolf FI (2010) Intracellular magnesium detection: imaging a brighter future. Analyst 135:1855–1866

    Article  PubMed  CAS  Google Scholar 

  144. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochem 19:2396–2404

    Article  CAS  Google Scholar 

  145. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  PubMed  CAS  Google Scholar 

  146. Ueno T, Urano Y, Setsukinai K, Takakusa H, Kojima H, Kikuchi K, Ohkubo K, Fukuzumi S, Nagano T (2004) Rational principles for modulating fluorescence properties of fluorescein. J Am Chem Soc 126:14079–14085

    Article  PubMed  CAS  Google Scholar 

  147. Umezawa K, Nakamura Y, Makino H, Citterio D, Suzuki K (2008) Bright, color-tunable fluorescent dyes in the visible-near-infrared region. J Am Chem Soc 130:1550–1551

    Article  PubMed  CAS  Google Scholar 

  148. Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M, Nagano T, Watanabe T, Hasegawa A, Choyke PL, Kobayashi H (2009) Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat Med 15:104–109

    Article  PubMed  CAS  Google Scholar 

  149. Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T (2005) Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc 127:4888–4894

    Article  PubMed  CAS  Google Scholar 

  150. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14

    Article  PubMed  CAS  Google Scholar 

  151. Vendrell M, Zhai D, Er JC, Chang Y-T (2012) Combinatorial strategies in fluorescent probe development. Chem Rev 112:4391–4420

    Article  PubMed  CAS  Google Scholar 

  152. von Prowazek S (1914) Über Fluorescenz der Zellen. Kleinwelt 6:37–40

    Google Scholar 

  153. Waggoner AS (1979) Dye indicators of membrane potential. Ann Rev Biophys Bioeng 8:47–68

    Article  CAS  Google Scholar 

  154. Wahler D, Badalassi F, Crotti P, Reymond J-L (2002) Enzyme fingerprints of activity, and stereo- and enantioselectivity from fluorogenic and chromogenic substrate arrays. Chem Eur J 8:3211–3228

    Article  PubMed  CAS  Google Scholar 

  155. Walkup GK, Imperiali B (1997) Fluorescent chemosensors for divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization. J Am Chem Soc 119:3443–3450

    Article  CAS  Google Scholar 

  156. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022

    Article  PubMed  CAS  Google Scholar 

  157. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  PubMed  CAS  Google Scholar 

  158. Whitaker JE, Haugland RP, Prendergast FG (1991) Spectral and photophysical studies of benzo[c]xanthene dyes: dual emission pH sensors. Anal Biochem 194:330–344

    Article  PubMed  CAS  Google Scholar 

  159. Whitney MA, Crisp JL, Nguyen LT, Friedman B, Gross LA, Steinbach P, Tsien RY, Nguyen QT (2011) Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat Biotechnol 29:352–356

    Article  PubMed  CAS  Google Scholar 

  160. Wysockia LM, Lavis LD (2011) Advances in the chemistry of small molecule fluorescent probes. Curr Opin Chem Biol 15:752–759

    Article  CAS  Google Scholar 

  161. Yap YW, Whiteman M, Cheung NS (2007) Chlorinative stress: an under appreciated mediator of neurodegeneration? Cell Signal 19:219–228

    Article  PubMed  CAS  Google Scholar 

  162. Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium channel family. Genome Biol 4:207.1–207.7

    Article  Google Scholar 

  163. Yuan L, Lin W, Yang Y, Chen H (2012) A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J Am Chem Soc 134:1200–1211

    Article  PubMed  CAS  Google Scholar 

  164. Zhai D, Lee S-C, Vendrell M, Leong LP, Chang Y-T (2012) Synthesis of a novel BODIPY library and its application in the discovery of a fructose sensor. ACS Comb Sci 14:81–84

    Article  PubMed  CAS  Google Scholar 

  165. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  PubMed  CAS  Google Scholar 

  166. Zlokarnik G, Negulescu PA, Knapp TE, Mere L, Burres N, Feng L, Whitney M, Roemer K, Tsien RY (1998) Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter. Science 279:84–88

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Toru Komatsu for the helpful comments on the manuscript. We are also grateful for the financial support from the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant no. 22000006 to T.N. and T.T. and grant no. 23651231 to T.T.). T.T. was also supported by the Cosmetology Research Foundation and Mochida Memorial Foundation for Medical and Pharmaceutical Research, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Nagano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terai, T., Nagano, T. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch - Eur J Physiol 465, 347–359 (2013). https://doi.org/10.1007/s00424-013-1234-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1234-z

Keywords

Navigation