Skip to main content
Log in

ATP-sensitive K+ channels in rat colonic epithelium

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

ATP-sensitive K+ (KATP) channels couple the metabolic state of a cell to its electrical activity. They consist of a hetero-octameric complex with pore-forming Kir6.x (Kir6.1, Kir6.2) and regulatory sulfonylurea receptor (SUR) subunits. Functional data indicate that KATP channels contribute to epithelial K+ currents at colonic epithelia. However, their molecular identity and their properties are largely unknown. Therefore, changes in short-circuit current (I sc) induced by the KATP channel opener pinacidil (5 10−4 mol l−1) were measured in Ussing chambers under control conditions and in the presence of different blockers of KATP channels. The channel subunits expressed by the colonic epithelium were identified by immunohistochemistry and by RT-PCR. The K+ channel opener, when administered at the serosal side, induced an increase in I sc consistent with the induction of transepithelial Cl secretion after activation of basolateral K+ channels, whereas mucosal administration of pinacidil resulted in a negative I sc. The increase in I sc evoked by serosal pinacidil was inhibited by serosal administration of glibenclamide (5 10−4 mol l−1) and gliclazide (10−6 mol l−1), but was resistant even against a high concentration (10−2 mol l−1) of tolbutamide. In contrast, none of these inhibitors (administered at the mucosal side) reduced significantly the negative I sc induced by mucosal pinacidil. Instead, pinacidil inhibited Cl currents across apical Cl channels in basolaterally depolarized epithelia indicating that the negative I sc induced by mucosal pinacidil is due to a transient inhibition of Cl secretion. In mRNA prepared from isolated colonic crypts, messenger RNA for both pore-forming subunits, Kir6.1 and Kir6.2, and two regulatory subunits (SUR1and SUR2B) was found. Expression within the colonic epithelium was confirmed for these subunits by immunohistochemistry. In consequence, KATP channels are present in the basolateral membrane of the colonic epithelium; their exact subunit composition, however, has still to be revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunski M (1990) Glucose, sulphonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science 247:852–854

    Article  PubMed  CAS  Google Scholar 

  2. Ashcroft FM, Harrison DE, Ashcroft SJ (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312:446–448

    Article  PubMed  CAS  Google Scholar 

  3. Ashcroft FM, Gribble FM (1999) ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia 42:903–919

    Article  PubMed  CAS  Google Scholar 

  4. Ashcroft FM, Gribble FM (2000) New windows on the mechanism of action of KATP channel openers. Trends Pharmacol Sci 21:439–445

    Article  PubMed  CAS  Google Scholar 

  5. Babenko AP, Aguilar-Bryan L, Bryan J (1998) A view of SUR/KIR6.x, KATP channels. Annu Rev Physiol 60:667–687

    Article  PubMed  CAS  Google Scholar 

  6. Blondeau N, Plamondon H, Richelme C, Heurteaux C, Lazdunski M (2000) KATP channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection. Neuroscience 100:465–474

    Article  PubMed  CAS  Google Scholar 

  7. Cao K, Tang G, Hu D, Wang R (2002) Molecular basis of ATP-sensitive K+ channels in rat vascular smooth muscles. Biochem Biophys Res Commun 296:463–469

    Article  PubMed  CAS  Google Scholar 

  8. Chutkow WA, Makielski JC, Nelson DJ, Burant CF, Fan Z (1999) Alternative splicing of SUR2 exon 17 regulates nucleotide sensitivity of the ATP-sensitive potassium channels. J Biol Chem 274:13656–13665

    Article  PubMed  CAS  Google Scholar 

  9. Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311:271–273

    Article  PubMed  CAS  Google Scholar 

  10. Cook NS, Quast U (1990) Potassium channels. Structure, classification, function and therapeutic potential. In: Cook NS (ed) Potassium channel pharmacology. Ellis Horwood, New York, pp 181–255

    Google Scholar 

  11. Edwards G, Weston AH (1993) The pharmacology of ATP-sensitive K+ channels. Annu Rev Pharmacol Toxicol 33:597–637

    Article  PubMed  CAS  Google Scholar 

  12. Greger R (2000) Role of CFTR in the colon. Annu Rev Physiol 62:467–491

    Article  PubMed  CAS  Google Scholar 

  13. Gribble FM, Tucker SJ, Seino S, Ashcroft FM (1998) Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell KATP channels. Diabetes 47:1412–1418

    Article  PubMed  CAS  Google Scholar 

  14. Hennig B, Diener M (2009) Actions of hydrogen sulfide on ion transport across rat distal colon. Brit J Pharmacol 158:1263–1275

    Article  CAS  Google Scholar 

  15. Hennig B, Schultheiss G, Kunzelmann K, Diener M (2008) Ca2+-induced Cl efflux at rat distal colonic epithelium. J Membrane Biol 221:61–72

    Article  CAS  Google Scholar 

  16. Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulphonylurea receptor. Science 270:1166–1170

    Article  PubMed  CAS  Google Scholar 

  17. Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16:1011–1017

    Article  PubMed  CAS  Google Scholar 

  18. Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247

    Article  PubMed  CAS  Google Scholar 

  19. Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, Matsuzawa Y, Kurachi Y (1996) A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem 271:24321–24324

    Article  PubMed  CAS  Google Scholar 

  20. Jöns T, Wittschieber D, Beyer A, Meier C, Brune A, Thomzig A, Ahnert-Hilger G, Veh RW (2006) K+-ATP-channel-related protein complexes: potential transducers in the regulation of epithelial tight junction permeability. J Cell Sci 119:3087–3097

    Article  PubMed  Google Scholar 

  21. Liu M, Seino S, Kirchgessner A (1999) Identification and characterization of glucoresponsive neurons in the enteric nervous system. J Neurosci 19:10305–10317

    PubMed  CAS  Google Scholar 

  22. Maguire D, MacNamara B, Cuffe JE, Winter D, Doolan CM, Urbach V, O' Sullivan GC, Harvey BJ (1999) Rapid responses to aldosterone in human distal colon. Steroids 64:51–63

    Article  PubMed  CAS  Google Scholar 

  23. Meddings JB (1997) Review article: intestinal permeability in Crohn’s disease. Aliment Pharmacol Ther 11(Suppl 3):47–53

    PubMed  Google Scholar 

  24. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148

    Article  PubMed  CAS  Google Scholar 

  25. Olaison G, Sjödahl R, Tagesson C (1990) Abnormal intestinal permeability in Crohn’s disease. A possible pathogenic factor. Scand J Gastroenterol 25:321–8

    Article  PubMed  CAS  Google Scholar 

  26. Ploug KB, Edvinsson L, Olesen J, Jansen-Olesen I (2006) Pharmacological and molecular comparison of KATP channels in rat basilar and middle cerebral arteries. Eur J Pharmacol 553:254–262

    Article  PubMed  CAS  Google Scholar 

  27. Pouokam E, Diener M (2011) Mechanims of actions of hydrogen sulfide at rat distal colonic epithelium. Brit J Pharmacol 162:392–404

    Article  CAS  Google Scholar 

  28. Schultheiss G, Kocks SL, Diener M (2002) Methods for the study of ionic currents and Ca2+-signals in isolated colonic crypts. Biol Proced Online 3:70–78 (http://www.biologicalprocedures.com/)

    Article  PubMed  CAS  Google Scholar 

  29. Seino S, Miki T (2003) Physiological and pathophysiological roles of ATP-sensitive K+ channels. Progr Biophys Mol Biol 81:133–176

    Article  CAS  Google Scholar 

  30. Sheppard DN, Welsh MJ (1992) Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride channels. J Gen Physiol 100:573–591

    Article  PubMed  CAS  Google Scholar 

  31. Söderholm JD, Olaison G, Peterson KH, Franzén LE, Lindmark T, Wirén M, Tagesson C, Sjödahl R (2002) Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn’s disease. Gut 50:307–313

    Article  PubMed  Google Scholar 

  32. Spruce AE, Standen NB, Standfield PR (1985) Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316:736–738

    Article  PubMed  CAS  Google Scholar 

  33. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT (1989) Hyperpolarizing vasodilatators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245:177–180

    Article  PubMed  CAS  Google Scholar 

  34. Strabel D, Diener M (1995) Evidence against direct activation of chloride secretion by carbachol in the rat distal colon. Eur J Pharmacol 274:181–191

    Article  PubMed  CAS  Google Scholar 

  35. Tilmann M, Kunzelmann K, Fröbe U, Cabantchik I, Lang HJ, Englert HC, Greger R (1991) Different types of blockers of the intermediate-conductance outwardly rectifying chloride channel in epithelia. Pflügers Arch Eur J Physiol 418:556–563

    Article  CAS  Google Scholar 

  36. Wallace JL, Vong L, McKnight W, Dicay M, Gary RM (2009) Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137:569–578

    Article  PubMed  CAS  Google Scholar 

  37. Wulfsen I, Hauber HP, Schiemann D, Bauer CK, Schwarz JR (2000) Expression of mRNA for voltage-dependent and inward-rectifying K channels in GH3/B6 cells and rat pituitary. J Neuroendocrinol 12:263–272

    Article  PubMed  CAS  Google Scholar 

  38. Yamada M, Isomoto S, Matsumoto S, Kondo C, Shindo T, Horio Y, Kurachi Y (1997) Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel. J Physiol 499:715–720

    PubMed  CAS  Google Scholar 

  39. Zhou M, He HJ, Hirano M, Sekiguchi M, Tanaka O, Kawahara K, Abe H (2010) Localization of ATP-sensitive K+ channel subunits in rat submandibular gland. J Histochem Cytochem 58:499–507

    Article  PubMed  CAS  Google Scholar 

  40. Zhou M, He HJ, Suzuki R, Liu KX, Tanaka O, Sekiguchi M, Itoh H, Kawahara K, Abe H (2007) Localization of sulfonylurea receptor subunits, SUR2A and SUR2B, in rat heart. J Histochem Cytochem 55:795–804

    Article  PubMed  CAS  Google Scholar 

  41. Zhou M, Tanaka O, Sekiguchi M, He HJ, Yasuoka Y, Itoh H, Kawahara K, Abe H (2005) ATP-sensitive K+-channel subunits on the mitochondria and endoplasmic reticulum of rat cardiomyocytes. J Histochem Cytochem 53:1491–1500

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Deutsche Forschungsgemeinschaft, grant Di 388/11-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Diener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouokam, E., Bader, S., Brück, B. et al. ATP-sensitive K+ channels in rat colonic epithelium. Pflugers Arch - Eur J Physiol 465, 865–877 (2013). https://doi.org/10.1007/s00424-012-1207-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1207-7

Keywords

Navigation