Skip to main content
Log in

Noise-induced alterations in cochlear mechanics, electromotility, and cochlear amplification

  • Sensory Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Loud sounds are a common cause of hearing loss. Very intense sounds may result in permanent hearing loss, but lower levels typically cause a transient decrease in auditory sensitivity. Studies have arrived at different conclusions as regards the physiological mechanisms underlying such temporary threshold shifts. Here, we investigated the effect of acoustic overstimulation on the mechanics of the low-frequency areas of the guinea pig cochlea. We demonstrate that brief loud sound exposure results in an increased phase lag and a paradoxical frequency-specific increase of sound-evoked displacement. Despite the increased displacement, electrically evoked motion is reduced. Because electromotility is important for amplifying low-level sounds, this change was associated with a decrease in measures of cochlear amplification. These changes recovered over the course of 30–40 min. Overstimulation also caused an increase in cytoplasmic calcium levels of both hair cells and supporting cells. These data suggest that reduced organ of Corti stiffness contributes to temporary threshold shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ashmore J (2008) Cochlear outer hair cell motility. Physiol Rev 88:173–210

    Article  PubMed  CAS  Google Scholar 

  2. Beurg M, Nam JH, Chen Q, Fettiplace R (2010) Calcium balance and mechanotransduction in rat cochlear hair cells. J Neurophysiol 104:18–34

    Article  PubMed  CAS  Google Scholar 

  3. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196

    Article  PubMed  CAS  Google Scholar 

  4. Brownell WE, Jacob S, Hakizimana P, Ulfendahl M, Fridberger A (2011) Membrane cholesterol modulates cochlear electromechanics. Pflügers Arch 461:677–686

    Article  PubMed  CAS  Google Scholar 

  5. Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155

    Article  PubMed  CAS  Google Scholar 

  6. Chan E, Suneson A, Ulfendahl M (1998) Acoustic trauma causes reversible stiffness changes in auditory sensory cells. Neuroscience 83:961–968

    Article  PubMed  CAS  Google Scholar 

  7. Chen F, Zha D, Fridberger A, Zheng J, Choudhury N, Jacques SL, Wang RK, Shi X, Nuttall AL (2011) A differentially amplified motion in the ear for near-threshold sound detection. Nat Neurosci 14:770–774

    Article  PubMed  CAS  Google Scholar 

  8. Dallos P, He DZ, Lin X, Sziklai I, Mehta S, Evans BN (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17:2212–2226

    PubMed  CAS  Google Scholar 

  9. de la Rochefoucauld O, Olson ES (2007) The role of organ of Corti mass in passive cochlear tuning. Biophys J 93:434–450

    Article  Google Scholar 

  10. Flock Å, Flock B, Fridberger A, Jäger W (1997) Methods for integrating fluorimetry in the study of hearing organ structure and function. Hearing Res 106:29–38

    Article  CAS  Google Scholar 

  11. Flock Å, Flock B, Fridberger A, Scarfone E, Ulfendahl M (1999) Supporting cells contribute to control of hearing sensitivity. J Neurosci 19:4498–4507

    PubMed  CAS  Google Scholar 

  12. Fridberger A, Flock Å, Ulfendahl M, Flock B (1998) Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc Natl Acad Sci U S A 95:7127–7132

    Article  PubMed  CAS  Google Scholar 

  13. Fridberger A, Zheng J, Nuttall AL (2002) Alterations of basilar membrane response phase and velocity after acoustic overstimulation. Hear Res 167:214–222

    Article  PubMed  Google Scholar 

  14. Fridberger A, Zheng J, Parthasarathi A, Ren T, Nuttall AL (2002) Loud sound-induced changes in cochlear mechanics. J Neurophysiol 88:2341–2348

    Article  PubMed  Google Scholar 

  15. Frolenkov GI, Mammano F, Kachar B (2003) Regulation of outer hair cell cytoskeletal stiffness by intracellular Ca2+: underlying mechanism and implications for cochlear mechanics. Cell Calcium 33:185–195

    Article  PubMed  CAS  Google Scholar 

  16. Gale JE, Piazza V, Ciubotaru CD, Mammano F (2004) A mechanism for sensing noise damage in the inner ear. Curr Biol 14:526–529

    Article  PubMed  CAS  Google Scholar 

  17. Gao WY, Ding DL, Zheng XY, Ruan FM, Liu YJ (1992) A comparison of changes in the stereocilia between temporary and permanent hearing losses in acoustic trauma. Hear Res 62:27–41

    Article  PubMed  CAS  Google Scholar 

  18. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical an dphysiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium 27:97–106

    Article  PubMed  CAS  Google Scholar 

  19. Hu BH, Cai Q, Manohar S, Jiang H, Ding D, Coling DE, Zheng G, Salvi R (2009) Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats. Neuroscience 161:915–925

    Article  PubMed  CAS  Google Scholar 

  20. Jacob S, Johansson C, Ulfendahl M, Fridberger A (2009) A digital heterodyne laser interferometer for studying cochlear mechanics. J Neurosci Methods 179:271–277

    Article  PubMed  Google Scholar 

  21. Jacob S, Pienkowski M, Fridberger A (2011) The endocochlear potential alters cochlear micromechanics. Biophys J 100:2586–2594

    Article  PubMed  CAS  Google Scholar 

  22. Jia S, Yang S, Guo W, He DZ (2009) Fate of mammalian cochlear hair cells and stereocilia after loss of the stereocilia. J Neurosci 29:15277–15285

    Article  PubMed  CAS  Google Scholar 

  23. Kennedy HJ, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433:880–883

    Article  PubMed  CAS  Google Scholar 

  24. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  PubMed  CAS  Google Scholar 

  25. Lahne M, Gale JE (2008) Damage-induced activation of ERK1/2 in cochlear supporting cells is a hair cell death-promoting signal that depends on extracellular ATP and calcium. J Neurosci 28:4918–4928

    Article  PubMed  CAS  Google Scholar 

  26. Liberman MC, Dodds LW (1984) Single-neuron labeling and chronic cochlear pathology. III stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74

    Article  PubMed  CAS  Google Scholar 

  27. Liberman MC, Dodds LW (1987) Acute ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res 26:45–64

    Article  PubMed  CAS  Google Scholar 

  28. Maier H, Zinn C, Rothe A, Tiziani H, Gummer AW (1997) Development of a narrow water-immersion objective for laser-interferometric and electrophysiological applications in cell biology. J Neurosci Methods 77:31–41

    Article  PubMed  CAS  Google Scholar 

  29. Marquis RE, Hudspeth AJ (1997) Effects of extracellular Ca2+ concentration on hair-bundle stiffness and gating-spring integrity in hair cells. Proc Natl Acad Sci USA 94:11923–11928

    Article  PubMed  CAS  Google Scholar 

  30. Naidu RC, Mountain DC (1998) Measurements of the stiffness map challenge a basic tenet of cochlear theories. Hear Res 124:124–131

    Article  PubMed  CAS  Google Scholar 

  31. Nakajima HH, Olson ES, Mountain DC, Hubbard AE (1996) Acoustic overstimulation enhances low-frequency electrically-evoked otoacoustic emissions and reduces high-frequency emissions. Aud Neurosci 3:79–99

    Google Scholar 

  32. Nordmann AS, Bohne BA, Harding GW (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139:13–30

    Article  PubMed  CAS  Google Scholar 

  33. Pae SS, Saunders JC (1994) Intra- and extracellular calcium modulates stereocilia stiffness on chick cochlear hair cells. Proc Natl Acad Sci USA 91:1153–1157

    Article  PubMed  CAS  Google Scholar 

  34. Pickles JO, Osborne MP, Comis SD (1987) Vulnerability of tip links between stereocilia to acoustic trauma in the guinea pig. Hearing Res 25:173–183

    Article  CAS  Google Scholar 

  35. Puel JL, Ruel J, Gervais d’Aldin C, Pujol R (1998) Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. NeuroReport 9:2109–2114

    Article  PubMed  CAS  Google Scholar 

  36. Ruggero MA, Rich NC, Recio A (1996) The effect of intense acoustic stimulation on basilar-membrane vibrations. Aud Neurosci 2:329–345

    Google Scholar 

  37. Saunders JC, Flock Å (1986) Recovery of threshold shift in hair-cell stereocilia following exposure to intense stimulation. Hearing Res 23:233–243

    Article  CAS  Google Scholar 

  38. Temchin AN, Recio-Spinoso A, Cai H, Ruggero MA (2012) Traveling waves on the organ of Corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers. J Neurosci 32:10522–10529

    Article  PubMed  CAS  Google Scholar 

  39. Ulfendahl M, Khanna SM, Löfstrand P (1993) Changes in the mechanical tuning characteristics of the hearing organ following acoustic overstimulation. Eur J Neurosci 5:713–723

    Article  PubMed  CAS  Google Scholar 

  40. Ulfendahl M, Khanna SM, Fridberger A, Flock Å, Flock B, Jäger W (1996) Mechanical response characteristics of the hearing organ in the low-frequency regions of the cochlea. J Neurophysiol 76:3850–3862

    PubMed  CAS  Google Scholar 

  41. van der Heijden M, Joris PX (2006) Panoramic measurements of the apex of the cochlea. J Neurosci 26:11462–11473

    Article  PubMed  Google Scholar 

  42. Yamashita D, Minami SB, Kanzaki S, Ogawa K, Miller JM (2008) Bcl-2 genes regulate noise-induced hearing loss. J Neurosci Res 86:920–928

    Article  PubMed  CAS  Google Scholar 

  43. Zhao Y, Yamoah EN, Gillespie PG (1996) Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc Natl Acad Sci (USA) 93:15469–15474

    Article  CAS  Google Scholar 

  44. Zhao HB, Yu N, Fleming CR (2005) Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci USA 102:18724–18729

    Article  PubMed  CAS  Google Scholar 

  45. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155

    Article  PubMed  CAS  Google Scholar 

  46. Zinn C, Maier H, Zenner H, Gummer AW (2000) Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea-pig cochlea. Hearing Res 142:159–183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Swedish Research Council (K2011-63X-14061-11-3), Hörselskadades Riksförbund, the foundation Tysta Skolan, and the Research Council for Working Life and Social Research (2006-1526). We thank Dr. Richard Chadwick for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Fridberger.

Additional information

Stefan Jacob and Cecilia Johansson contributed equally

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, S., Johansson, C. & Fridberger, A. Noise-induced alterations in cochlear mechanics, electromotility, and cochlear amplification. Pflugers Arch - Eur J Physiol 465, 907–917 (2013). https://doi.org/10.1007/s00424-012-1198-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1198-4

Keywords

Navigation