Skip to main content
Log in

Non-genomic effect of glucocorticoids on cardiovascular system

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Glucocorticoids (GCs) are essential steroid hormones for homeostasis, development, metabolism, and cognition and possess anti-inflammatory and immunosuppressive actions. Since glucocorticoid receptor II (GR) is nearly ubiquitous, chronic activation or depletion of GCs leads to dysfunction of diverse organs, including the heart and blood vessels, resulting predominantly from changes in gene expression. Most studies, therefore, have focused on the genomic effects of GC to understand its related pathophysiological manifestations. The nongenomic effects of GCs clearly differ from well-known genomic effects, with the former responding within several minutes without the need for protein synthesis. There is increasing evidence that the nongenomic actions of GCs influence various physiological functions. To develop a GC-mediated therapeutic target for the treatment of cardiovascular disease, understanding the genomic and nongenomic effects of GC on the cardiovascular system is needed. This article reviews our current understanding of the underlying mechanisms of GCs on cardiovascular diseases and stress, as well as how nongenomic GC signaling contributes to these conditions. We suggest that manipulation of GC action based on both GC and GR metabolism, mitochondrial impact, and the action of serum- and glucocorticoid-dependent kinase 1 may provide new information with which to treat cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abrass IB, Scarpace PJ (1981) Glucocorticoid regulation of myocardial beta-adrenergic receptors. Endocrinology 108:977–980

    Article  PubMed  CAS  Google Scholar 

  2. Adigun AA, Wrench N, Seidler FJ, Slotkin TA (2010) Neonatal dexamethasone treatment leads to alterations in cell signaling cascades controlling hepatic and cardiac function in adulthood. Neurotoxicol Teratol 32:193–199. doi:10.1016/j.ntt.2009.10.002

    Article  PubMed  CAS  Google Scholar 

  3. Adzic M, Djordjevic A, Demonacos C, Krstic-Demonacos M, Radojcic MB (2009) The role of phosphorylated glucocorticoid receptor in mitochondrial functions and apoptotic signalling in brain tissue of stressed Wistar rats. Int J Biochem Cell Biol 41:2181–2188. doi:10.1016/j.biocel.2009.04.001

    Article  PubMed  CAS  Google Scholar 

  4. Aoyama T, Matsui T, Novikov M, Park J, Hemmings B, Rosenzweig A (2005) Serum and glucocorticoid-responsive kinase-1 regulates cardiomyocyte survival and hypertrophic response. Circulation 111:1652–1659. doi:10.1161/01.cir.0000160352.58142.06

    Article  PubMed  CAS  Google Scholar 

  5. Bal MP, de Vries WB, van Oosterhout MF, Baan J, van der Wall EE, van Bel F, Steendijk P (2008) Long-term cardiovascular effects of neonatal dexamethasone treatment: hemodynamic follow-up by left ventricular pressure-volume loops in rats. J Appl Physiol 104:446–450. doi:10.1152/japplphysiol.00951.2007

    Article  PubMed  CAS  Google Scholar 

  6. Barnes PJ (2011) Glucocorticosteroids: current and future directions. Br J Pharmacol 163:29–43. doi:10.1111/j.1476-5381.2010.01199.x

    Article  PubMed  CAS  Google Scholar 

  7. Batenburg WW, Jansen PM, van den Bogaerdt AJ, Danser AH (2012) Angiotensin II-aldosterone interaction in human coronary microarteries involves GPR30, EGFR and endothelial NO synthase. Cardiovasc Res 94:136–143. doi:10.1093/cvr/cvs016

    Article  PubMed  CAS  Google Scholar 

  8. Berg JM (1989) DNA binding specificity of steroid receptors. Cell 57:1065–1068

    Article  PubMed  CAS  Google Scholar 

  9. Brostjan C, Anrather J, Csizmadia V, Stroka D, Soares M, Bach FH, Winkler H (1996) Glucocorticoid-mediated repression of NFkappaB activity in endothelial cells does not involve induction of IkappaBalpha synthesis. J Biol Chem 271:19612–19616

    Article  PubMed  CAS  Google Scholar 

  10. Burnstein KL, Cidlowski JA (1992) The down side of glucocorticoid receptor regulation. Mol Cell Endocrinol 83:C1–C8

    Article  PubMed  CAS  Google Scholar 

  11. Busjahn A, Seebohm G, Maier G, Toliat MR, Nurnberg P, Aydin A, Luft FC, Lang F (2004) Association of the serum and glucocorticoid regulated kinase (sgk1) gene with QT interval. Cell Physiol Biochem 14:135–142. doi:10.1159/000078105

    Article  PubMed  CAS  Google Scholar 

  12. Buttgereit F, Scheffold A (2002) Rapid glucocorticoid effects on immune cells. Steroids 67:529–534

    Article  PubMed  CAS  Google Scholar 

  13. Buttgereit F, Straub RH, Wehling M, Burmester GR (2004) Glucocorticoids in the treatment of rheumatic diseases: an update on the mechanisms of action. Arthritis Rheum 50:3408–3417. doi:10.1002/art.20583

    Article  PubMed  CAS  Google Scholar 

  14. Cato AC, Nestl A, Mink S (2002) Rapid actions of steroid receptors in cellular signaling pathways. Sci STKE 2002:re9. doi:10.1126/stke.2002.138.re9

    Article  PubMed  Google Scholar 

  15. Chae HJ, So HS, Chae SW, Park JS, Kim MS, Oh JM, Chung YT, Yang SH, Jeong ET, Kim HM, Park RK, Kim HR (2001) Sodium nitroprusside induces apoptosis of H9C2 cardiac muscle cells in a c-Jun N-terminal kinase-dependent manner. Int Immunopharmacol 1:967–978

    Article  PubMed  CAS  Google Scholar 

  16. Chai W, Danser AH (2006) Why are mineralocorticoid receptor antagonists cardioprotective? Naunyn Schmiedebergs Arch Pharmacol 374:153–162. doi:10.1007/s00210-006-0107-9

    Article  PubMed  CAS  Google Scholar 

  17. Chai W, Garrelds IM, de Vries R, Batenburg WW, van Kats JP, Danser AH (2005) Nongenomic effects of aldosterone in the human heart: interaction with angiotensin II. Hypertension 46:701–706. doi:10.1161/01.HYP.0000182661.98259.4f

    Article  PubMed  CAS  Google Scholar 

  18. Chai W, Hofland J, Jansen PM, Garrelds IM, de Vries R, van den Bogaerdt AJ, Feelders RA, de Jong FH, Danser AH (2010) Steroidogenesis vs. steroid uptake in the heart: do corticosteroids mediate effects via cardiac mineralocorticoid receptors? J Hypertens 28:1044–1053. doi:10.1097/HJH.0b013e328335c381

    Article  PubMed  CAS  Google Scholar 

  19. Charmandari E, Kino T (2007) Novel causes of generalized glucocorticoid resistance. Horm Metab Res 39:445–450. doi:10.1055/s-2007-980196

    Article  PubMed  CAS  Google Scholar 

  20. Chrousos GP, Kino T (2005) Intracellular glucocorticoid signaling: a formerly simple system turns stochastic. Sci STKE 2005:pe48. doi:10.1126/stke.3042005pe48

    Article  PubMed  Google Scholar 

  21. Clark AF, Tandler B, Vignos PJ Jr (1982) Glucocorticoid-induced alterations in the rabbit heart. Lab Invest 47:603–610

    PubMed  CAS  Google Scholar 

  22. Clerico A, Giannoni A, Vittorini S, Passino C (2011) Thirty years of the heart as an endocrine organ: physiological role and clinical utility of cardiac natriuretic hormones. Am J Physiol Heart Circ Physiol 301:H12–H20. doi:10.1152/ajpheart.00226.2011

    Article  PubMed  CAS  Google Scholar 

  23. Coghlan MJ, Jacobson PB, Lane B, Nakane M, Lin CW, Elmore SW, Kym PR, Luly JR, Carter GW, Turner R, Tyree CM, Hu J, Elgort M, Rosen J, Miner JN (2003) A novel antiinflammatory maintains glucocorticoid efficacy with reduced side effects. Mol Endocrinol 17:860–869. doi:10.1210/me.2002-0355

    Article  PubMed  CAS  Google Scholar 

  24. Cole TJ, Myles K, Purton JF, Brereton PS, Solomon NM, Godfrey DI, Funder JW (2001) GRKO mice express an aberrant dexamethasone-binding glucocorticoid receptor, but are profoundly glucocorticoid resistant. Mol Cell Endocrinol 173:193–202

    Article  PubMed  CAS  Google Scholar 

  25. Croxtall JD, van Hal PT, Choudhury Q, Gilroy DW, Flower RJ (2002) Different glucocorticoids vary in their genomic and non-genomic mechanism of action in A549 cells. Br J Pharmacol 135:511–519. doi:10.1038/sj.bjp.0704474

    Article  PubMed  CAS  Google Scholar 

  26. De Bosscher K, Beck IM, Haegeman G (2010) Classic glucocorticoids versus non-steroidal glucocorticoid receptor modulators: survival of the fittest regulator of the immune system? Brain Behav Immun 24:1035–1042. doi:10.1016/j.bbi.2010.06.010

    Article  PubMed  CAS  Google Scholar 

  27. Dec;18(6):505-14. CC, in Aov-iCebnic, myocytes. v, Grégoire G PP, Loirand G., Laboratoire de Physiologie FdmVP, Université de, Bordeaux II F, a SopvmwnNitpo, voltage-dependent Ca2+ channel blocker eatiit, concentration of free cytosolic Ca2+ dti, 4,5-trisphosphate, mediated Ca2+ release fbaoaCepC, various p-cai-mwhtteo, in paotCefN-iCr, inhibitor otdtmiOtgc, stimulation. L-sitmCedN, Under TiwrbdcD-co-bc, control conditions aoD-cttesww, but eTacedtiCs, did not evoke Ca2+ entry in venous myocytes under control conditions. However, or aoD-coNaCsdibc, The tcariCibaoaCep, protein eocstipsc-a, results kiK-aH-btN-iCeO, NA tsttaotv-iCeb, cGMP. iaiic

  28. Demonacos C, Djordjevic-Markovic R, Tsawdaroglou N, Sekeris CE (1995) The mitochondrion as a primary site of action of glucocorticoids: the interaction of the glucocorticoid receptor with mitochondrial DNA sequences showing partial similarity to the nuclear glucocorticoid responsive elements. J Steroid Biochem Mol Biol 55:43–55

    Article  PubMed  CAS  Google Scholar 

  29. Demonacos C, Tsawdaroglou NC, Djordjevic-Markovic R, Papalopoulou M, Galanopoulos V, Papadogeorgaki S, Sekeris CE (1993) Import of the glucocorticoid receptor into rat liver mitochondria in vivo and in vitro. J Steroid Biochem Mol Biol 46:401–413

    Article  PubMed  CAS  Google Scholar 

  30. Du J, Wang Y, Hunter R, Wei Y, Blumenthal R, Falke C, Khairova R, Zhou R, Yuan P, Machado-Vieira R, McEwen BS, Manji HK (2009) Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci U S A 106:3543–3548. doi:10.1073/pnas.0812671106

    Article  PubMed  CAS  Google Scholar 

  31. Falkenstein E, Wehling M (2000) Nongenomically initiated steroid actions. Eur J Clin Invest 30(Suppl 3):51–54

    Article  PubMed  CAS  Google Scholar 

  32. Funder JW (1997) Glucocorticoid and mineralocorticoid receptors: biology and clinical relevance. Annu Rev Med 48:231–240. doi:10.1146/annurev.med.48.1.231

    Article  PubMed  CAS  Google Scholar 

  33. Funder JW (2005) Mineralocorticoid receptors: distribution and activation. Heart Fail Rev 10:15–22. doi:10.1007/s10741-005-2344-2

    Article  PubMed  CAS  Google Scholar 

  34. Funder JW, Duval D, Meyer P (1973) Cardiac glucocorticoid receptors: the binding of tritiated dexamethasone in rat and dog heart. Endocrinology 93:1300–1308

    Article  PubMed  CAS  Google Scholar 

  35. Gagliardi L, Ho JT, Torpy DJ (2010) Corticosteroid-binding globulin: the clinical significance of altered levels and heritable mutations. Mol Cell Endocrinol 316:24–34. doi:10.1016/j.mce.2009.07.015

    Article  PubMed  CAS  Google Scholar 

  36. Ginty AT, Phillips AC, Roseboom TJ, Carroll D, Derooij SR (2012) Cardiovascular and cortisol reactions to acute psychological stress and cognitive ability in the Dutch Famine Birth Cohort Study. Psychophysiology 49:391–400. doi:10.1111/j.1469-8986.2011.01316.x

    Article  PubMed  Google Scholar 

  37. Girod JP, Brotman DJ (2004) Does altered glucocorticoid homeostasis increase cardiovascular risk? Cardiovasc Res 64:217–226. doi:10.1016/j.cardiores.2004.07.006

    Article  PubMed  CAS  Google Scholar 

  38. Gomez-Sanchez CE, Gomez-Sanchez EP (2001) Editorial: cardiac steroidogenesis—new sites of synthesis, or much ado about nothing? J Clin Endocrinol Metab 86:5118–5120

    Article  PubMed  CAS  Google Scholar 

  39. Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier JC, Rebsamen MC, Hsieh CM, Chui DS, Thomas KL, Prorock AJ, Laubach VE, Moskowitz MA, French BA, Ley K, Liao JK (2002) Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 8:473–479. doi:10.1038/nm0502-473

    Article  PubMed  CAS  Google Scholar 

  40. Haller J, Mikics E, Makara GB (2008) The effects of non-genomic glucocorticoid mechanisms on bodily functions and the central neural system. A critical evaluation of findings. Front Neuroendocrinol 29:273–291. doi:10.1016/j.yfrne.2007.10.004

    Article  PubMed  CAS  Google Scholar 

  41. Hammerman H, Schoen FJ, Braunwald E, Kloner RA (1984) Drug-induced expansion of infarct: morphologic and functional correlations. Circulation 69:611–617

    Article  PubMed  CAS  Google Scholar 

  42. Hartog M, Joplin GF (1968) Effects of cortisol deficiency on the electrocardiogram. Br Med J 2:275–277

    Article  PubMed  CAS  Google Scholar 

  43. Hedman E, Widen C, Asadi A, Dinnetz I, Schroder WP, Gustafsson JA, Wikstrom AC (2006) Proteomic identification of glucocorticoid receptor interacting proteins. Proteomics 6:3114–3126. doi:10.1002/pmic.200500266

    Article  PubMed  CAS  Google Scholar 

  44. Henke G, Setiawan I, Bohmer C, Lang F (2002) Activation of Na+/K+-ATPase by the serum and glucocorticoid-dependent kinase isoforms. Kidney Blood Press Res 25:370–374. doi:10.1159/000068699

    Article  PubMed  CAS  Google Scholar 

  45. Hinds TD Jr, Sanchez ER (2008) Protein phosphatase 5. Int J Biochem Cell Biol 40:2358–2362. doi:10.1016/j.biocel.2007.08.010

    Article  PubMed  CAS  Google Scholar 

  46. Hua SY, Chen YZ (1989) Membrane receptor-mediated electrophysiological effects of glucocorticoid on mammalian neurons. Endocrinology 124:687–691

    Article  PubMed  CAS  Google Scholar 

  47. Ismaili N, Garabedian MJ (2004) Modulation of glucocorticoid receptor function via phosphorylation. Ann N Y Acad Sci 1024:86–101. doi:10.1196/annals.1321.007

    Article  PubMed  CAS  Google Scholar 

  48. Katyare SS, Balasubramanian S, Parmar DV (2003) Effect of corticosterone treatment on mitochondrial oxidative energy metabolism in developing rat brain. Exp Neurol 183:241–248

    Article  PubMed  CAS  Google Scholar 

  49. Kayes-Wandover KM, White PC (2000) Steroidogenic enzyme gene expression in the human heart. J Clin Endocrinol Metab 85:2519–2525

    Article  PubMed  CAS  Google Scholar 

  50. Kewalramani G, Puthanveetil P, Kim MS, Wang F, Lee V, Hau N, Beheshti E, Ng N, Abrahani A, Rodrigues B (2008) Acute dexamethasone-induced increase in cardiac lipoprotein lipase requires activation of both Akt and stress kinases. Am J Physiol Endocrinol Metab 295:E137–E147. doi:10.1152/ajpendo.00004.2008

    Article  PubMed  CAS  Google Scholar 

  51. Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E (2010) Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 51:1968–2005. doi:10.3109/10428194.2010.506570

    Article  PubMed  CAS  Google Scholar 

  52. Klusonova P, Rehakova L, Borchert G, Vagnerova K, Neckar J, Ergang P, Miksik I, Kolar F, Pacha J (2009) Chronic intermittent hypoxia induces 11beta-hydroxysteroid dehydrogenase in rat heart. Endocrinology 150:4270–4277. doi:10.1210/en.2008-1493

    Article  PubMed  CAS  Google Scholar 

  53. Kohn JA, Deshpande K, Ortlund EA (2012) Deciphering modern glucocorticoid cross-pharmacology using ancestral corticosteroid receptors. J Biol Chem. doi:10.1074/jbc.M112.346411

  54. Konishi A, Tazawa C, Miki Y, Darnel AD, Suzuki T, Ohta Y, Tabayashi K, Sasano H (2003) The possible roles of mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type 2 in cardiac fibrosis in the spontaneously hypertensive rat. J Steroid Biochem Mol Biol 85:439–442

    Article  PubMed  CAS  Google Scholar 

  55. Krstic MD, Rogatsky I, Yamamoto KR, Garabedian MJ (1997) Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol Cell Biol 17:3947–3954

    PubMed  CAS  Google Scholar 

  56. Lackner C, Daufeldt S, Wildt L, Allera A (1998) Glucocorticoid-recognizing and -effector sites in rat liver plasma membrane. Kinetics of corticosterone uptake by isolated membrane vesicles. III. Specificity and stereospecificity. J Steroid Biochem Mol Biol 64:69–82

    Article  PubMed  CAS  Google Scholar 

  57. Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86:1151–1178. doi:10.1152/physrev.00050.2005

    Article  PubMed  CAS  Google Scholar 

  58. Lang F, Cohen P (2001) Regulation and physiological roles of serum- and glucocorticoid-induced protein kinase isoforms. Sci STKE 2001:re17. doi:10.1126/stke.2001.108.re17

    Article  PubMed  CAS  Google Scholar 

  59. Lefer AM (1968) Influence of corticosteroids on mechanical performance of isolated rat papillary muscles. Am J Physiol 214:518–524

    PubMed  CAS  Google Scholar 

  60. Lewis JG, Bagley CJ, Elder PA, Bachmann AW, Torpy DJ (2005) Plasma free cortisol fraction reflects levels of functioning corticosteroid-binding globulin. Clin Chim Acta 359:189–194. doi:10.1016/j.cccn.2005.03.044

    Article  PubMed  CAS  Google Scholar 

  61. Libby P, Maroko PR, Bloor CM, Sobel BE, Braunwald E (1973) Reduction of experimental myocardial infarct size by corticosteroid administration. J Clin Invest 52:599–607. doi:10.1172/jci107221

    Article  PubMed  CAS  Google Scholar 

  62. Limbourg FP, Liao JK (2003) Nontranscriptional actions of the glucocorticoid receptor. J Mol Med (Berl) 81:168–174. doi:10.1007/s00109-003-0418-y

    CAS  Google Scholar 

  63. Liu SJ, Wyeth RP, Melchert RB, Kennedy RH (2000) Aging-associated changes in whole cell K+ and L-type Ca2+ currents in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 279:H889–H900

    PubMed  CAS  Google Scholar 

  64. Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, Wehling M (2003) Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 83:965–1016. doi:10.1152/physrev.00003.2003

    PubMed  Google Scholar 

  65. Losel R, Wehling M (2003) Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4:46–56. doi:10.1038/nrm1009

    Article  PubMed  CAS  Google Scholar 

  66. Lu NZ, Cidlowski JA (2004) The origin and functions of multiple human glucocorticoid receptor isoforms. Ann N Y Acad Sci 1024:102–123. doi:10.1196/annals.1321.008

    Article  PubMed  CAS  Google Scholar 

  67. Matsubara H (1998) Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 83:1182–1191

    Article  PubMed  CAS  Google Scholar 

  68. McInnes KJ, Kenyon CJ, Chapman KE, Livingstone DE, Macdonald LJ, Walker BR, Andrew R (2004) 5alpha-reduced glucocorticoids, novel endogenous activators of the glucocorticoid receptor. J Biol Chem 279:22908–22912. doi:10.1074/jbc.M402822200

    Article  PubMed  CAS  Google Scholar 

  69. McMaster A, Ray DW (2007) Modelling the glucocorticoid receptor and producing therapeutic agents with anti-inflammatory effects but reduced side-effects. Exp Physiol 92:299–309. doi:10.1113/expphysiol.2006.036194

    Article  PubMed  CAS  Google Scholar 

  70. Meares GP, Zmijewska AA, Jope RS (2004) Heat shock protein-90 dampens and directs signaling stimulated by insulin-like growth factor-1 and insulin. FEBS Lett 574:181–186. doi:10.1016/j.febslet.2004.08.026

    Article  PubMed  CAS  Google Scholar 

  71. Miner JN, Hong MH, Negro-Vilar A (2005) New and improved glucocorticoid receptor ligands. Expert Opin Investig Drugs 14:1527–1545. doi:10.1517/13543784.14.12.1527

    Article  PubMed  CAS  Google Scholar 

  72. Miyamoto S, Murphy AN, Brown JH (2009) Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. J Bioenerg Biomembr 41:169–180. doi:10.1007/s10863-009-9205-y

    Article  PubMed  CAS  Google Scholar 

  73. Molnar GA, Lindschau C, Dubrovska G, Mertens PR, Kirsch T, Quinkler M, Gollasch M, Wresche S, Luft FC, Muller DN, Fiebeler A (2008) Glucocorticoid-related signaling effects in vascular smooth muscle cells. Hypertension 51:1372–1378. doi:10.1161/hypertensionaha.107.105718

    Article  PubMed  CAS  Google Scholar 

  74. Morin C, Zini R, Simon N, Charbonnier P, Tillement JP, Le Louet H (2000) Low glucocorticoid concentrations decrease oxidative phosphorylation of isolated rat brain mitochondria: an additional effect of dexamethasone. Fundam Clin Pharmacol 14:493–500

    Article  PubMed  CAS  Google Scholar 

  75. Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC (1995) Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet 10:394–399. doi:10.1038/ng0895-394

    Article  PubMed  CAS  Google Scholar 

  76. Narayanan N, Yang C, Xu A (2004) Dexamethasone treatment improves sarcoplasmic reticulum function and contractile performance in aged myocardium. Mol Cell Biochem 266:31–36

    Article  PubMed  CAS  Google Scholar 

  77. Nussinovitch U, de Carvalho JF, Pereira RM, Shoenfeld Y (2010) Glucocorticoids and the cardiovascular system: state of the art. Curr Pharm Des 16:3574–3585

    Article  PubMed  CAS  Google Scholar 

  78. Odermatt A, Arnold P, Frey FJ (2001) The intracellular localization of the mineralocorticoid receptor is regulated by 11beta-hydroxysteroid dehydrogenase type 2. J Biol Chem 276:28484–28492. doi:10.1074/jbc.M100374200

    Article  PubMed  CAS  Google Scholar 

  79. Ohtani T, Mano T, Hikoso S, Sakata Y, Nishio M, Takeda Y, Otsu K, Miwa T, Masuyama T, Hori M, Yamamoto K (2009) Cardiac steroidogenesis and glucocorticoid in the development of cardiac hypertrophy during the progression to heart failure. J Hypertens 27:1074–1083. doi:10.1097/HJH.0b013e328326cb04

    Article  PubMed  CAS  Google Scholar 

  80. Okuda M, Young KR Jr, Lefer AM (1976) Localization of glucocorticoid uptake in normal and ischemic myocardial tissue of isolated perfused cat hearts. Circ Res 39:640–646

    Article  PubMed  CAS  Google Scholar 

  81. Penefsky ZJ, Kahn M (1971) Inotropic effects of dexamethasone in mammalian heart muscle. Eur J Pharmacol 15:259–266

    Article  PubMed  CAS  Google Scholar 

  82. Perogamvros I, Underhill C, Henley DE, Hadfield KD, Newman WG, Ray DW, Lightman SL, Hammond GL, Trainer PJ (2010) Novel corticosteroid-binding globulin variant that lacks steroid binding activity. J Clin Endocrinol Metab 95:E142–E150. doi:10.1210/jc.2010-0746

    Article  PubMed  CAS  Google Scholar 

  83. Psarra AM, Hermann S, Panayotou G, Spyrou G (2009) Interaction of mitochondrial thioredoxin with glucocorticoid receptor and NF-kappaB modulates glucocorticoid receptor and NF-kappaB signalling in HEK-293 cells. Biochem J 422:521–531. doi:10.1042/bj20090107

    Article  PubMed  CAS  Google Scholar 

  84. Psarra AM, Sekeris CE (2008) Steroid and thyroid hormone receptors in mitochondria. IUBMB Life 60:210–223. doi:10.1002/iub.37

    Article  PubMed  CAS  Google Scholar 

  85. Puthanveetil P, Wang Y, Wang F, Kim MS, Abrahani A, Rodrigues B (2010) The increase in cardiac pyruvate dehydrogenase kinase-4 after short-term dexamethasone is controlled by an Akt-p38-forkhead box other factor-1 signaling axis. Endocrinology 151:2306–2318. doi:10.1210/en.2009-1072

    Article  PubMed  CAS  Google Scholar 

  86. Radomski MW, Palmer RM, Moncada S (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A 87:10043–10047

    Article  PubMed  CAS  Google Scholar 

  87. Rao MK, Xu A, Narayanan N (2001) Glucocorticoid modulation of protein phosphorylation and sarcoplasmic reticulum function in rat myocardium. Am J Physiol Heart Circ Physiol 281:H325–H333

    PubMed  CAS  Google Scholar 

  88. Reichardt HM, Tuckermann JP, Gottlicher M, Vujic M, Weih F, Angel P, Herrlich P, Schutz G (2001) Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J 20:7168–7173. doi:10.1093/emboj/20.24.7168

    Article  PubMed  CAS  Google Scholar 

  89. Reuter KC, Loitsch SM, Dignass AU, Steinhilber D, Stein J (2012) Selective non-steroidal glucocorticoid receptor agonists attenuate inflammation but do not impair intestinal epithelial cell restitution in vitro. PLoS One 7:e29756. doi:10.1371/journal.pone.0029756

    Article  PubMed  CAS  Google Scholar 

  90. Revollo JR, Cidlowski JA (2009) Mechanisms generating diversity in glucocorticoid receptor signaling. Ann N Y Acad Sci 1179:167–178. doi:10.1111/j.1749-6632.2009.04986.x

    Article  PubMed  CAS  Google Scholar 

  91. Rivers C, Levy A, Hancock J, Lightman S, Norman M (1999) Insertion of an amino acid in the DNA-binding domain of the glucocorticoid receptor as a result of alternative splicing. J Clin Endocrinol Metab 84:4283–4286

    Article  PubMed  CAS  Google Scholar 

  92. Rosen J, Miner JN (2005) The search for safer glucocorticoid receptor ligands. Endocr Rev 26:452–464. doi:10.1210/er.2005-0002

    Article  PubMed  CAS  Google Scholar 

  93. Rubin JM, Hidalgo A, Bordallo C, Cantabrana B, Sanchez M (1999) Positive inotropism induced by androgens in isolated left atrium of rat: evidence for a cAMP-dependent transcriptional mechanism. Life Sci 65:1035–1045

    Article  PubMed  CAS  Google Scholar 

  94. Sambhi MP, Weil MH, Udhoji VN (1965) Acute pharmacodynamic effects of glucocorticoids; cardiac output and related hemodynamic changes in normal subjects and patients in shock. Circulation 31:523–530

    Article  PubMed  CAS  Google Scholar 

  95. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    Article  PubMed  CAS  Google Scholar 

  96. Schacke H, Docke WD, Asadullah K (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96:23–43

    Article  PubMed  CAS  Google Scholar 

  97. Schmidt BM, Gerdes D, Feuring M, Falkenstein E, Christ M, Wehling M (2000) Rapid, nongenomic steroid actions: a new age? Front Neuroendocrinol 21:57–94. doi:10.1006/frne.1999.0189

    Article  PubMed  CAS  Google Scholar 

  98. Schoneveld JL, Fritsch-Stork RD, Bijlsma JW (2011) Nongenomic glucocorticoid signaling: new targets for immunosuppressive therapy? Arthritis Rheum 63:3665–3667. doi:10.1002/art.30635

    Article  PubMed  Google Scholar 

  99. Sellevold OF, Jynge P (1989) Bell-shaped concentration-response curve for myocardial stimulation by glucocorticoids. An experimental study in the rat. Acta Anaesthesiol Scand 33:61–65

    Article  PubMed  CAS  Google Scholar 

  100. Seri I, Tan R, Evans J (2001) Cardiovascular effects of hydrocortisone in preterm infants with pressor-resistant hypotension. Pediatrics 107:1070–1074

    Article  PubMed  CAS  Google Scholar 

  101. Shaltout HA, Rose JC, Figueroa JP, Chappell MC, Diz DI, Averill DB (2010) Acute AT(1)-receptor blockade reverses the hemodynamic and baroreflex impairment in adult sheep exposed to antenatal betamethasone. Am J Physiol Heart Circ Physiol 299:H541–H547. doi:10.1152/ajpheart.00100.2010

    Article  PubMed  CAS  Google Scholar 

  102. Shivaji S, Jagannadham MV (1992) Steroid-induced perturbations of membranes and its relevance to sperm acrosome reaction. Biochim Biophys Acta 1108:99–109

    Article  PubMed  CAS  Google Scholar 

  103. Silvestre JS, Robert V, Heymes C, Aupetit-Faisant B, Mouas C, Moalic JM, Swynghedauw B, Delcayre C (1998) Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation. J Biol Chem 273:4883–4891

    Article  PubMed  CAS  Google Scholar 

  104. Simon N, Jolliet P, Morin C, Zini R, Urien S, Tillement JP (1998) Glucocorticoids decrease cytochrome c oxidase activity of isolated rat kidney mitochondria. FEBS Lett 435:25–28

    Article  PubMed  CAS  Google Scholar 

  105. Song IH, Buttgereit F (2006) Non-genomic glucocorticoid effects to provide the basis for new drug developments. Mol Cell Endocrinol 246:142–146. doi:10.1016/j.mce.2005.11.012

    Article  PubMed  CAS  Google Scholar 

  106. Spath JA Jr, Lane DL, Lefer AM (1974) Protective action of methylprednisolone on the myocardium during experimental myocardial ischemia in the cat. Circ Res 35:44–51

    Article  PubMed  CAS  Google Scholar 

  107. Stahn C, Buttgereit F (2008) Genomic and nongenomic effects of glucocorticoids. Nat Clin Pract Rheumatol 4:525–533. doi:10.1038/ncprheum0898

    Article  PubMed  CAS  Google Scholar 

  108. Steiner A, Locher R, Sachinidis A, Vetter W (1989) Cortisol-stimulated phosphoinositide metabolism in vascular smooth muscle cells: a role for glucocorticoids in blood pressure control? J Hypertens Suppl 7:S140–S141

    PubMed  CAS  Google Scholar 

  109. Steiner A, Vogt E, Locher R, Vetter W (1988) Stimulation of the phosphoinositide signalling system as a possible mechanism for glucocorticoid action in blood pressure control. J Hypertens Suppl 6:S366–S368

    PubMed  CAS  Google Scholar 

  110. Talaber G, Boldizsar F, Bartis D, Palinkas L, Szabo M, Berta G, Setalo G Jr, Nemeth P, Berki T (2009) Mitochondrial translocation of the glucocorticoid receptor in double-positive thymocytes correlates with their sensitivity to glucocorticoid-induced apoptosis. Int Immunol 21:1269–1276. doi:10.1093/intimm/dxp093

    Article  PubMed  CAS  Google Scholar 

  111. Tanz RD, Kerby CF (1961) The inotropic action of certain steroids upon isolated cardiac tissue; with comments on steroidal cardiotonic structure-activity relationships. J Pharmacol Exp Ther 131:56–64

    PubMed  CAS  Google Scholar 

  112. Taves MD, Gomez-Sanchez CE, Soma KK (2011) Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. Am J Physiol Endocrinol Metab 301:E11–E24. doi:10.1152/ajpendo.00100.2011

    Article  PubMed  CAS  Google Scholar 

  113. Thiemermann C (2002) Corticosteroids and cardioprotection. Nat Med 8:453–455. doi:10.1038/nm0502-453

    Article  PubMed  CAS  Google Scholar 

  114. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM (2004) 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 25:831–866. doi:10.1210/er.2003-0031

    Article  PubMed  CAS  Google Scholar 

  115. Waldegger S, Barth P, Raber G, Lang F (1997) Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sci U S A 94:4440–4445

    Article  PubMed  CAS  Google Scholar 

  116. Wallerath T, Witte K, Schafer SC, Schwarz PM, Prellwitz W, Wohlfart P, Kleinert H, Lehr HA, Lemmer B, Forstermann U (1999) Down-regulation of the expression of endothelial NO synthase is likely to contribute to glucocorticoid-mediated hypertension. Proc Natl Acad Sci U S A 96:13357–13362

    Article  PubMed  CAS  Google Scholar 

  117. Wang Z, Chen W, Kono E, Dang T, Garabedian MJ (2007) Modulation of glucocorticoid receptor phosphorylation and transcriptional activity by a C-terminal-associated protein phosphatase. Mol Endocrinol 21:625–634. doi:10.1210/me.2005-0338

    Article  PubMed  CAS  Google Scholar 

  118. Weigel NL, Moore NL (2007) Steroid receptor phosphorylation: a key modulator of multiple receptor functions. Mol Endocrinol 21:2311–2319. doi:10.1210/me.2007-0101

    Article  PubMed  CAS  Google Scholar 

  119. Whitworth JA (1994) Studies on the mechanisms of glucocorticoid hypertension in humans. Blood Press 3:24–32

    Article  PubMed  CAS  Google Scholar 

  120. Whitworth JA, Kelly JJ, Brown MA, Williamson PM, Lawson JA (1997) Glucocorticoids and hypertension in man. Clin Exp Hypertens 19:871–884

    Article  PubMed  CAS  Google Scholar 

  121. Xue Q, Dasgupta C, Chen M, Zhang L (2011) Foetal hypoxia increases cardiac AT(2)R expression and subsequent vulnerability to adult ischaemic injury. Cardiovasc Res 89:300–308. doi:10.1093/cvr/cvq303

    Article  PubMed  CAS  Google Scholar 

  122. Yang S, Zhang L (2004) Glucocorticoids and vascular reactivity. Curr Vasc Pharmacol 2:1–12

    Article  PubMed  Google Scholar 

  123. Yang M, Zheng J, Miao Y, Wang Y, Cui W, Guo J, Qiu S, Han Y, Jia L, Li H, Cheng J, Du J (2012) Serum-glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis. Arterioscler Thromb Vasc Biol 32:1675–1686. doi:10.1161/atvbaha.112.248732

    Article  PubMed  CAS  Google Scholar 

  124. Yano K, Tsuda Y, Kaji Y, Kanaya S, Fujino T, Niho Y (1994) Effects of hydrocortisone on transmembrane currents in guinea pig ventricular myocytes—possible evidence for positive inotropism. Jpn Circ J 58:836–843

    Article  PubMed  CAS  Google Scholar 

  125. Young MJ, Funder JW (1996) The renin-angiotensin-aldosterone system in experimental mineralocorticoid-salt-induced cardiac fibrosis. Am J Physiol 271:E883–E888

    PubMed  CAS  Google Scholar 

  126. Yudt MR, Jewell CM, Bienstock RJ, Cidlowski JA (2003) Molecular origins for the dominant negative function of human glucocorticoid receptor beta. Mol Cell Biol 23:4319–4330

    Article  PubMed  CAS  Google Scholar 

  127. Zecevic M, Heitzmann D, Camargo SM, Verrey F (2004) SGK1 increases Na, K-ATP cell-surface expression and function in Xenopus laevis oocytes. Pflugers Arch 448:29–35. doi:10.1007/s00424-003-1222-9

    Article  PubMed  CAS  Google Scholar 

  128. Zhou J, Li M, Sheng CQ, Liu L, Li Z, Wang Y, Zhou JR, Jing ZP, Chen YZ, Jiang CL (2011) A novel strategy for development of glucocorticoids through non-genomic mechanism. Cell Mol Life Sci 68:1405–1414. doi:10.1007/s00018-010-0526-0

    Article  PubMed  CAS  Google Scholar 

  129. Zietz B, Hrach S, Scholmerich J, Straub RH (2001) Differential age-related changes of hypothalamus-pituitary-adrenal axis hormones in healthy women and men—role of interleukin 6. Exp Clin Endocrinol Diabetes 109:93–101. doi:10.1055/s-2001-14833

    Article  PubMed  CAS  Google Scholar 

  130. Zuo Z, Urban G, Scammell JG, Dean NM, McLean TK, Aragon I, Honkanen RE (1999) Ser/Thr protein phosphatase type 5 (PP5) is a negative regulator of glucocorticoid receptor-mediated growth arrest. Biochemistry 38:8849–8857. doi:10.1021/bi990842e

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0020224, 2010-0025855, and 2012-007595).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Han.

Additional information

Nari Kim and Jin Han contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.R., Kim, H.K., Youm, J.B. et al. Non-genomic effect of glucocorticoids on cardiovascular system. Pflugers Arch - Eur J Physiol 464, 549–559 (2012). https://doi.org/10.1007/s00424-012-1155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1155-2

Keywords

Navigation