Skip to main content

Advertisement

Log in

Rac1 is essential for phospholipase C-γ2 activation in platelets

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Platelet activation at sites of vascular injury is triggered through different signaling pathways leading to activation of phospholipase (PL) Cβ or PLCγ2. Active PLCs trigger Ca2+ mobilization and entry, which is a prerequisite for adhesion, secretion, and thrombus formation. PLCβ isoenzymes are activated downstream of G protein-coupled receptors (GPCRs), whereas PLCγ2 is activated downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors, such as the major platelet collagen receptor glycoprotein (GP) VI or CLEC-2. The mechanisms underlying PLC regulation are not fully understood. An involvement of small GTPases of the Rho family (Rho, Rac, Cdc42) in PLC activation has been proposed but this has not been investigated in platelets. We here show that murine platelets lacking Rac1 display severely impaired GPVI- or CLEC-2-dependent activation and aggregation. This defect was associated with impaired production of inositol 1,4,5-trisphosphate (IP3) and intracellular calcium mobilization suggesting inappropriate activation of PLCγ2 despite normal tyrosine phosphorylation of the enzyme. Rac1 −/− platelets displayed defective thrombus formation on collagen under flow conditions which could be fully restored by co-infusion of ADP and the TxA2 analog U46619, indicating that impaired GPVI-, but not G-protein signaling, was responsible for the observed defect. In line with this, Rac1 −/− mice were protected in two collagen-dependent arterial thrombosis models. Together, these results demonstrate that Rac1 is essential for ITAM-dependent PLCγ2 activation in platelets and that this is critical for thrombus formation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CLEC-2:

C-type lectin-like receptor

CRP:

collagen related peptide

CVX:

convulxin

FACS:

fluoresence activated cell sorting

FcR:

Fc receptor

FITC:

fluoresceine isothiocyanate

GP:

glycoprotein

HRP:

horseradish peroxidase

Ig:

immunoglobulin

PAGE:

polyacrylamide gel electrophoresis

PLCγ2:

phospholipase Cγ2

PMA:

phorbol 12-myristate 13-acetate

prp:

platelet rich plasma

PVDF:

polyvinylidene difluoride

RC:

rhodocytin

SDS:

sodium dodecyl sulfate

TxA2 :

thromboxane A2

vWF:

von Willebrand factor

References

  1. Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8:1227–1234

    Article  PubMed  CAS  Google Scholar 

  2. Varga-Szabo D, Pleines I, Nieswandt B (2008) Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 28:403–412

    Article  PubMed  CAS  Google Scholar 

  3. Offermanns S, Toombs CF, Hu YH, Simon MI (1997) Defective platelet activation in G alpha(q)-deficient mice. Nature 389:183–186

    Article  PubMed  CAS  Google Scholar 

  4. Watson SP, Asazuma N, Atkinson B, Berlanga O, Best D, Bobe R, Jarvis G, Marshall S, Snell D, Stafford M, Tulasne D, Wilde J, Wonerow P, Frampton J (2001) The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen. Thromb Haemost 86:276–288

    PubMed  CAS  Google Scholar 

  5. Nieswandt B, Watson SP (2003) Platelet-collagen interaction: is GPVI the central receptor? Blood 102:449–461

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pohlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VL, Ozaki Y, Watson SP (2006) A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107:542–549

    Article  PubMed  CAS  Google Scholar 

  7. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  8. Varga-Szabo D, Braun A, Kleinschnitz C, Bender M, Pleines I, Pham M, Renne T, Stoll G, Nieswandt B (2008) The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 205:1583–1591

    Article  PubMed  CAS  Google Scholar 

  9. Bird GS, Aziz O, Lievremont JP, Wedel BJ, Trebak M, Vazquez G, Putney JW Jr (2004) Mechanisms of phospholipase C-regulated calcium entry. Curr Mol Med 4:291–301

    Article  PubMed  CAS  Google Scholar 

  10. Illenberger D, Schwald F, Pimmer D, Binder W, Maier G, Dietrich A, Gierschik P (1998) Stimulation of phospholipase C-beta2 by the Rho GTPases Cdc42Hs and Rac1. EMBO J 17:6241–6249

    Article  PubMed  CAS  Google Scholar 

  11. Illenberger D, Walliser C, Strobel J, Gutman O, Niv H, Gaidzik V, Kloog Y, Gierschik P, Henis YI (2003) Rac2 regulation of phospholipase C-beta 2 activity and mode of membrane interactions in intact cells. J Biol Chem 278:8645–8652

    Article  PubMed  CAS  Google Scholar 

  12. Illenberger D, Walliser C, Nurnberg B, Diaz LM, Gierschik P (2003) Specificity and structural requirements of phospholipase C-beta stimulation by Rho GTPases versus G protein beta gamma dimers. J Biol Chem 278:3006–3014

    Article  PubMed  CAS  Google Scholar 

  13. Piechulek T, Rehlen T, Walliser C, Vatter P, Moepps B, Gierschik P (2005) Isozyme-specific stimulation of phospholipase C-gamma2 by Rac GTPases. J Biol Chem 280:38923–38931

    Article  PubMed  CAS  Google Scholar 

  14. Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99:1293–1304

    Article  PubMed  CAS  Google Scholar 

  15. Klages B, Brandt U, Simon MI, Schultz G, Offermanns S (1999) Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 144:745–754

    Article  PubMed  CAS  Google Scholar 

  16. Miranti CK, Leng L, Maschberger P, Brugge JS, Shattil SJ (1998) Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr Biol 8:1289–1299

    Article  PubMed  CAS  Google Scholar 

  17. McCarty OJ, Larson MK, Auger JM, Kalia N, Atkinson BT, Pearce AC, Ruf S, Henderson RB, Tybulewicz VL, Machesky LM, Watson SP (2005) Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. J Biol Chem 280:39474–39484

    Article  PubMed  CAS  Google Scholar 

  18. Azim AC, Barkalow K, Chou J, Hartwig JH (2000) Activation of the small GTPases, rac and cdc42, after ligation of the platelet PAR-1 receptor. Blood 95:959–964

    PubMed  CAS  Google Scholar 

  19. Gratacap MP, Payrastre B, Nieswandt B, Offermanns S (2001) Differential regulation of Rho and Rac through heterotrimeric G-proteins and cyclic nucleotides. J Biol Chem 276:47906–47913

    PubMed  CAS  Google Scholar 

  20. Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP (1995) Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82:643–653

    Article  PubMed  CAS  Google Scholar 

  21. Soulet C, Gendreau S, Missy K, Benard V, Plantavid M, Payrastre B (2001) Characterisation of Rac activation in thrombin- and collagen-stimulated human blood platelets. FEBS Lett 507:253–258

    Article  PubMed  CAS  Google Scholar 

  22. Akbar H, Kim J, Funk K, Cancelas JA, Shang X, Chen L, Johnson JF, Williams DA, Zheng Y (2007) Genetic and pharmacologic evidence that Rac1 GTPase is involved in regulation of platelet secretion and aggregation. J Thromb Haemost 5:1747–1755

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki-Inoue K, Yatomi Y, Asazuma N, Kainoh M, Tanaka T, Satoh K, Ozaki Y (2001) Rac, a small guanosine triphosphate-binding protein, and p21-activated kinase are activated during platelet spreading on collagen-coated surfaces: roles of integrin alpha(2)beta(1). Blood 98:3708–3716

    Article  PubMed  CAS  Google Scholar 

  24. Chrostek A, Wu X, Quondamatteo F, Hu R, Sanecka A, Niemann C, Langbein L, Haase I, Brakebusch C (2006) Rac1 is crucial for hair follicle integrity but is not essential for maintenance of the epidermis. Mol Cell Biol 26:6957–6970

    Article  PubMed  CAS  Google Scholar 

  25. Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429

    Article  PubMed  CAS  Google Scholar 

  26. Knight CG, Morton LF, Onley DJ, Peachey AR, Ichinohe T, Okuma M, Farndale RW, Barnes MJ (1999) Collagen-platelet interaction: Gly-Pro-Hyp is uniquely specific for platelet Gp VI and mediates platelet activation by collagen. Cardiovasc Res 41:450–457

    Article  PubMed  CAS  Google Scholar 

  27. Nieswandt B, Bergmeier W, Rackebrandt K, Gessner JE, Zirngibl H (2000) Identification of critical antigen-specific mechanisms in the development of immune thrombocytopenic purpura in mice. Blood 96:2520–2527

    PubMed  CAS  Google Scholar 

  28. Nieswandt B, Brakebusch C, Bergmeier W, Schulte V, Bouvard D, Mokhtari-Nejad R, Lindhout T, Heemskerk JW, Zirngibl H, Fassler R (2001) Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J 20:2120–2130

    Article  PubMed  CAS  Google Scholar 

  29. Heemskerk JW, Feijge MA, Rietman E, Hornstra G (1991) Rat platelets are deficient in internal Ca2+ release and require influx of extracellular Ca2+ for activation. FEBS Lett 284:223–226

    Article  PubMed  CAS  Google Scholar 

  30. Sugihara K, Nakatsuji N, Nakamura K, Nakao K, Hashimoto R, Otani H, Sakagami H, Kondo H, Nozawa S, Aiba A, Katsuki M (1998) Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 17:3427–3433

    Article  PubMed  CAS  Google Scholar 

  31. Nieswandt B, Moser M, Pleines I, Varga-Szabo D, Monkley S, Critchley D, Fassler R (2007) Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med 204:3113–3118

    Article  PubMed  CAS  Google Scholar 

  32. Fuller GL, Williams JA, Tomlinson MG, Eble JA, Hanna SL, Pohlmann S, Suzuki-Inoue K, Ozaki Y, Watson SP, Pearce AC (2007) The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J Biol Chem 282:12397–12409

    Article  PubMed  CAS  Google Scholar 

  33. Nieswandt B, Schulte V, Zywietz A, Gratacap MP, Offermanns S (2002) Costimulation of Gi- and G12/G13-mediated signaling pathways induces integrin alpha IIbbeta 3 activation in platelets. J Biol Chem 277:39493–39498

    Article  PubMed  CAS  Google Scholar 

  34. Moers A, Wettschureck N, Gruner S, Nieswandt B, Offermanns S (2004) Unresponsiveness of platelets lacking both Galpha(q) and Galpha(13). Implications for collagen-induced platelet activation. J Biol Chem 279:45354–45359

    Article  PubMed  CAS  Google Scholar 

  35. Bergmeier W, Schulte V, Brockhoff G, Bier U, Zirngibl H, Nieswandt B (2002) Flow cytometric detection of activated mouse integrin alphaIIbbeta3 with a novel monoclonal antibody. Cytometry 48:80–86

    Article  PubMed  CAS  Google Scholar 

  36. Heemskerk JW, Vuist WM, Feijge MA, Reutelingsperger CP, Lindhout T (1997) Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: evidence for regulation by protein tyrosine kinase-dependent Ca2+ responses. Blood 90:2615–2625

    PubMed  CAS  Google Scholar 

  37. Gruner S, Prostredna M, Aktas B, Moers A, Schulte V, Krieg T, Offermanns S, Eckes B, Nieswandt B (2004) Anti-glycoprotein VI treatment severely compromises hemostasis in mice with reduced alpha2beta1 levels or concomitant aspirin therapy. Circulation 110:2946–2951

    Article  PubMed  Google Scholar 

  38. Massberg S, Gawaz M, Gruner S, Schulte V, Konrad I, Zohlnhofer D, Heinzmann U, Nieswandt B (2003) A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 197:41–49

    Article  PubMed  CAS  Google Scholar 

  39. Nieswandt B, Schulte V, Bergmeier W, Mokhtari-Nejad R, Rackebrandt K, Cazenave JP, Ohlmann P, Gachet C, Zirngibl H (2001) Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J Exp Med 193:459–470

    Article  PubMed  CAS  Google Scholar 

  40. Gruner S, Prostredna M, Koch M, Miura Y, Schulte V, Jung SM, Moroi M, Nieswandt B (2005) Relative antithrombotic effect of soluble GPVI dimer compared with anti-GPVI antibodies in mice. Blood 105:1492–1499

    Article  PubMed  Google Scholar 

  41. Pozgajova M, Sachs UJ, Hein L, Nieswandt B (2006) Reduced thrombus stability in mice lacking the alpha2A-adrenergic receptor. Blood 108:510–514

    Article  PubMed  CAS  Google Scholar 

  42. Thodeti CK, Massoumi R, Bindslev L, Sjolander A (2002) Leukotriene D4 induces association of active RhoA with phospholipase C-gamma1 in intestinal epithelial cells. Biochem J 365:157–163

    Article  PubMed  CAS  Google Scholar 

  43. Chang JS, Seok H, Kwon TK, Min DS, Ahn BH, Lee YH, Suh JW, Kim JW, Iwashita S, Omori A, Ichinose S, Numata O, Seo JK, Oh YS, Suh PG (2002) Interaction of elongation factor-1alpha and pleckstrin homology domain of phospholipase C-gamma 1 with activating its activity. J Biol Chem 277:19697–19702

    Article  PubMed  CAS  Google Scholar 

  44. Kauffenstein G, Bergmeier W, Eckly A, Ohlmann P, Leon C, Cazenave JP, Nieswandt B, Gachet C (2001) The P2Y(12) receptor induces platelet aggregation through weak activation of the alpha(IIb)beta(3) integrin—a phosphoinositide 3-kinase-dependent mechanism. FEBS Lett 505:281–290

    Article  PubMed  CAS  Google Scholar 

  45. Nonne C, Lenain N, Hechler B, Mangin P, Cazenave JP, Gachet C, Lanza F (2005) Importance of platelet phospholipase Cgamma2 signaling in arterial thrombosis as a function of lesion severity. Arterioscler Thromb Vasc Biol 25:1293–1298

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, Narimatsu H, Ozaki Y (2007) Involvement of the snake toxin receptor CLEC-2 in podoplanin-mediated platelet activation by cancer cells. J Biol Chem 282(36):25993–6001

    Article  PubMed  CAS  Google Scholar 

  47. Nassar N, Cancelas J, Zheng J, Williams DA, Zheng Y (2006) Structure- function based design of small molecule inhibitors targeting Rho family GTPases. Curr Top Med Chem 6:1109–1116

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Sylvia Hengst for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Nieswandt.

Additional information

Irina Pleines, Margitta Elvers, Amrei Strehl: these authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleines, I., Elvers, M., Strehl, A. et al. Rac1 is essential for phospholipase C-γ2 activation in platelets. Pflugers Arch - Eur J Physiol 457, 1173–1185 (2009). https://doi.org/10.1007/s00424-008-0573-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0573-7

Keywords

Navigation