Skip to main content
Log in

Stein’s neuronal model with pooled renewal input

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The input of Stein’s model of a single neuron is usually described by using a Poisson process, which is assumed to represent the behaviour of spikes pooled from a large number of presynaptic spike trains. However, such a description of the input is not always appropriate as the variability cannot be separated from the intensity. Therefore, we create and study Stein’s model with a more general input, a sum of equilibrium renewal processes. The mean and variance of the membrane potential are derived for this model. Using these formulas and numerical simulations, the model is analyzed to study the influence of the input variability on the properties of the membrane potential and the output spike trains. The generalized Stein’s model is compared with the original Stein’s model with Poissonian input using the relative difference of variances of membrane potential at steady state and the integral square error of output interspike intervals. Both of the criteria show large differences between the models for input with high variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avila-Akerberg O, Chacron MJ (2011) Nonrenewal spike train statistics: causes and functional consequences on neural coding. Exp Brain Res 210:353–371

    Article  PubMed  Google Scholar 

  • Benedetto E, Sacerdote L (2013) On dependency properties of the ISIs generated by a two-compartmental neuronal model. Biol Cybern 107:95–106

    Article  PubMed  Google Scholar 

  • Burkitt AN (2001) Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials. Biol Cybern 85:247–255

    Article  CAS  PubMed  Google Scholar 

  • Burkitt AN (2006a) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95:1–19

    Article  CAS  PubMed  Google Scholar 

  • Burkitt AN (2006b) A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol Cybern 95:97–112

    Article  CAS  PubMed  Google Scholar 

  • Câteau H, Reyes AD (2006) Relation between single neuron and population spiking statistics and effects on network activity. Phys Rev Lett 96:058101

    Article  PubMed  Google Scholar 

  • Cox DR (1962) Renewal theory. Methuen & Co., London

    Google Scholar 

  • Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Chapman & Hall, London

    Book  Google Scholar 

  • Cupera J (2014) Diffusion approximation of neuronal models revisited. Math Biosci Eng 11:11–25

    Article  PubMed  Google Scholar 

  • de la Rocha J, Moreno R, Parga N (2004) Correlations modulate the non-monotonic response of a neuron with short-term plasticity. Neurocomputing 58–60:313–319

    Article  Google Scholar 

  • Deger M, Helias M, Boucsein C, Rotter S (2012) Statistical properties of superimposed stationary spike trains. J Comput Neurosci 32:443–463

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Crescenzo A, Martinucci B (2007) Analysis of a stochastic neuronal model with excitatory inputs and state-dependent effects. Math Biosci 209:547–563

    Article  PubMed  Google Scholar 

  • Ditlevsen S, Lansky P (2011) Firing variability is higher than deduced from the empirical coefficient of variation. Neural Comput 23:1944–1966

    Article  PubMed  Google Scholar 

  • Droste F, Lindner B (2014) Integrate-and-fire neurons driven by asymmetric dichotomous noise. Biol Cybern 108:825–843

    Article  PubMed  Google Scholar 

  • Dummer B, Wieland S, Lindner B (2014) Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity. Front Comp Neurosci 8:104

    Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Giorno W, Spina S (2014) On the return process with refractoriness for a non-homogeneous Ornstein–Uhlenbeck neuronal model. Math Biosci Eng 11:285–302

    PubMed  Google Scholar 

  • Gomez L, Budelli R, Saa R, Stiber M, Segundo JP (2005) Pooled spike trains of correlated presynaptic inputs as realizations of cluster point processes. Biol Cybern 92:110–127

    Article  PubMed  Google Scholar 

  • Hohn N, Burkitt AN (2001) Shot noise in the leaky integrate-and-fire neuron. Phys Rev E 63:031902

    Article  CAS  Google Scholar 

  • Jahn P, Berg RW, Hounsgaard J, Ditlevsen S (2011) Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process. J Comput Neurosci 31:563–579

    Article  PubMed Central  PubMed  Google Scholar 

  • Kistler WM, Gerstner W, van Hemmen JL (1997) Reduction of the Hodgkin–Huxley equations to a single-variable threshold model. Neural Comput 9:1015–1045

    Article  Google Scholar 

  • Kostal L, Lansky P, Rospars JP (2007a) Neuronal coding and spiking randomness. Eur J Neurosci 26:2693–2701

    Article  PubMed  Google Scholar 

  • Kostal L, Lansky P, Zucca C (2007b) Randomness and variability of the neuronal activity described by the Ornstein–Uhlenbeck model. Netw Comput Neural 18:63–75

    Article  Google Scholar 

  • Koyama S, Kostal L (2014) The effect of interspike interval statistics on the information gain under the rate coding hypothesis. Math Biosci Eng 11:63–80

    Article  PubMed  Google Scholar 

  • Lansky P (1984) On approximations of Stein’s neuronal model. J Theor Biol 107:631–647

    Article  CAS  PubMed  Google Scholar 

  • Levakova M, Ditlevsen S, Lansky P (2014) Estimating latency from inhibitory input. Biol Cybern 108:475–493

    Article  PubMed  Google Scholar 

  • Lindner B (2006) Superposition of many independent spike trains is generally not a Poisson process. Phys Rev E 73:022901

    Article  Google Scholar 

  • Lindner B, Chacron MJ, Longtin A (2005) Integrate-and-fire neurons with threshold noise: a tractable model of how interspike interval correlations affect neuronal signal transmission. Phys Rev E 72:021911

    Article  Google Scholar 

  • Ly C, Tranchina D (2009) Spike train statistics and dynamics with synaptic input from any renewal process: a population density approach. Neural Comput 21:360–396

    Article  PubMed  Google Scholar 

  • Moreno R, de la Rocha J, Renart A, Parga N (2002) Response of spiking neurons to correlated inputs. Phys Rev Lett 89:288101

    Article  PubMed  Google Scholar 

  • Musila M, Lansky P (1991) Generalized Stein’s model for anatomically complex neurons. Biosystems 25:179–191

    Article  CAS  PubMed  Google Scholar 

  • Nawrot MP, Boucsein C, Molina VR, Riehle A, Aertsen A, Rotter S (2008) Measurement of variability dynamics in cortical spike trains. J Neurosci Meth 169:374–390

    Article  Google Scholar 

  • Omi T, Shinomoto S (2011) Optimizing time histograms for non-poissonian spike trains. Neural Comput 23:3125–3144

    Article  PubMed  Google Scholar 

  • Ostojic S (2011) Interspike interval distributions of spiking neurons driven by fluctuating inputs. J Neurophysiol 106:361–373

    Article  PubMed  Google Scholar 

  • Ricciardi LM, Sacerdote L (1979) The Ornstein–Uhlenbeck process as a model for neuronal activity, I. Mean and variance of the firing time. Biol Cybern 35:1–9

    Article  CAS  PubMed  Google Scholar 

  • Richardson MJE, Gerstner W (2005) Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Comput 17:923–947

    Article  PubMed  Google Scholar 

  • Richardson MJE, Gerstner W (2006) Statistics of subthreshold neuronal voltage fluctuations due to conductance-based synaptic shot noise. Chaos 16:026106

  • Richardson MJE, Swarbrick R (2010) Firing-rate response of a neuron receiving excitatory and inhibitory synaptic shot noise. Phys Rev Lett 105:178102

    Article  PubMed  Google Scholar 

  • Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J Neurosci 20:6193–6209

    CAS  PubMed  Google Scholar 

  • Shimokawa T, Koyama S, Shinomoto S (2010) A characterization of the time-rescaled gamma process as a model for spike trains. J Comput Neurosci 29:183–193

    Article  PubMed  Google Scholar 

  • Shinomoto S, Koyama S (2007) A solution to the controversy between rate and temporal coding. Stat Med 26:4032–4038

    Article  PubMed  Google Scholar 

  • Smith CE, Smith MV (1984) Moments of voltage trajectories for Stein’s model with synaptic reversal potentials. J Theor Neurobiol 3:67–77

    Google Scholar 

  • Smith PL (2010) From Poisson shot noise to the integrated Ornstein–Uhlenbeck process: neurally principled models of information accumulation in decision-making and response time. J Math Psychol 54:266–283

    Article  Google Scholar 

  • Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5:173–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuckwell HC (1979) Synaptic transmission in a model for stochastic neural activity. J Theor Biol 77:65–81

    Article  CAS  PubMed  Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories. University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation 15-06991S and by the Institute of Physiology RVO: 67985823.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Rajdl.

Appendix

Appendix

Here we derive formulas for mean and variance of \(S(t)\) and \(S\). It is clearly sufficient to derive mean and variance of quantity

$$\begin{aligned} \tilde{S}(t) = \sum _{i=1}^{N(t)} A_i \mathrm{e}^{-\frac{t-X_i}{\tau }}, \end{aligned}$$
(25)

where \(N(t)\) and \(X_i,\,i=1,\ldots ,N(t),\) correspond to an equilibrium renewal process with intensity \(\lambda \) and \(A_i,\,i=1,\ldots ,N(t),\) are positive independent and identically distributed random variables with mean \(\mu \) and variance \(\sigma ^2\). The formulas (16), (17), (18) and (19) will be simple consequences.

Firstly, let us denote,

$$\begin{aligned} \tilde{S}_0(t) = \sum _{i=1}^{N(t)} \mathrm{e}^{-\frac{t-X_i}{\tau }} \end{aligned}$$
(26)

and have \(\Delta t > 0\) and points \(t_i = i\Delta t,\,i=0,\ldots ,\lfloor t/\Delta t\rfloor \). The number of events in interval \([t_{i-1},t_i)\) is denoted as \(N_i,\) \(i=1,\ldots ,\lfloor t/\Delta t\rfloor \). Then

$$\begin{aligned} \tilde{S}_0(t) = \lim _{\Delta t \rightarrow 0}\sum ^{\lfloor t/\Delta t\rfloor }_{i=1}N_i \mathrm{e}^{-\frac{t-t_i}{\tau }}, \end{aligned}$$
(27)

and thus

$$\begin{aligned} \mathrm {E}(\tilde{S}_0(t))= & {} \lim _{\Delta t \rightarrow 0}\!\sum ^{\lfloor t/\Delta t\rfloor }_{i=1}\mathrm {E}(N_i) \mathrm{e}^{-\frac{t-t_i}{\tau }} \!=\! \lim _{\Delta t \rightarrow 0}\!\sum ^{\lfloor t/\Delta t\rfloor }_{i=1}\lambda \Delta t \mathrm{e}^{-\frac{t-t_i}{\tau }}\nonumber \\= & {} \lambda \int _0^t \mathrm{e}^{-\frac{t-x}{\tau }}\,\mathrm {d}x= \lambda \tau \left( 1-\mathrm{e}^{-\frac{t}{\tau }}\right) , \end{aligned}$$
(28)

which simply yields

$$\begin{aligned} \mathrm {E}(\tilde{S}(t)) = \mu \lambda \tau \left( 1-\mathrm{e}^{-\frac{t}{\tau }}\right) . \end{aligned}$$
(29)

Before deriving the formulas for variance, a necessary relationship is presented. It holds (Cox and Lewis 1966)

$$\begin{aligned} \lim _{\Delta t \rightarrow 0} \frac{\,\mathrm {Cov}(\Delta N_t,\Delta N_{t+x})}{\Delta t^2} = \lambda (\lambda _o(x)-\lambda +\delta (x)), \end{aligned}$$
(30)

where \(\Delta N_t\) denotes the number of events in interval \([t,t+\Delta t]\) and \(\delta (x)\) is the Dirac delta function. Note that in neuronal modeling the function (30) is known as correlation function of the spike train (Gerstner and Kistler 2002). Then

$$\begin{aligned} \mathrm {Var}(\tilde{S}_0(t))= & {} \lim _{\Delta t \rightarrow 0}\sum ^{\lfloor t/\Delta t\rfloor }_{i=1}\sum ^{\lfloor t/\Delta t\rfloor }_{j=1} \mathrm{e}^{-\frac{t-t_i}{\tau }} \mathrm{e}^{-\frac{t-t_j}{\tau }} \,\mathrm {Cov}(N_i,N_j) \nonumber \\= & {} \lim _{\Delta t\rightarrow 0}\!\sum ^{\lfloor t/\Delta t\rfloor }_{i=1}\! \Delta t\, \mathrm{e}^{-\frac{t-t_i}{\tau }} \sum ^{\lfloor t/\Delta t\rfloor }_{j=1} \Delta t\, \mathrm{e}^{-\frac{t-t_j}{\tau }}\frac{\,\mathrm {Cov}(N_i,N_j)}{\Delta t^2} \nonumber \\= & {} \lambda \int _{0}^t\int _{0}^t \mathrm{e}^{-\frac{x+y}{\tau }}(\lambda _o(|y-x|)-\lambda )\,\mathrm {d}x\,\mathrm {d}y\nonumber \\&+\, \frac{1}{2}\lambda \tau (1-\mathrm{e}^{-\frac{2t}{\tau }}). \end{aligned}$$
(31)

Next,

$$\begin{aligned} \mathrm {Var}(\tilde{S}(t))= & {} \mathrm {Var}\left( \sum _{i=1}^{N(t)} A_i \mathrm{e}^{-\frac{t-X_i}{\tau }}\right) = \sum _{i=1}^{N(t)} \mathrm {Var}\left( A_i\mathrm{e}^{-\frac{t-X_i}{\tau }}\right) \nonumber \\&+\, \sum _{i=1}^{N(t)} \sum _{\begin{array}{c} j=1 \\ j\ne i \end{array}} ^{N(t)} \,\mathrm {Cov}\left( A_i\mathrm{e}^{-\frac{t-X_i}{\tau }},A_j\mathrm{e}^{-\frac{t-X_j}{\tau }}\right) \nonumber \\= & {} \mu ^2\mathrm {Var}(\tilde{S}_0(t))+\sigma ^2\mathrm {E}\left( \sum _{i=1}^{N(t)}\mathrm{e}^{-2\frac{t-X_i}{\tau }}\right) \nonumber \\= & {} \mu ^2\lambda \int _{0}^t\int _{0}^t \mathrm{e}^{-\frac{x+y}{\tau }}(\lambda _o(|y-x|)-\lambda )\,\mathrm {d}x\,\mathrm {d}y\nonumber \\&+\, \frac{1}{2}\mu ^2\lambda \tau \left( 1-\mathrm{e}^{-\frac{2t}{\tau }}\right) + \frac{1}{2}\sigma ^2\lambda \tau \left( 1-\mathrm{e}^{-\frac{2t}{\tau }}\right) .\nonumber \\ \end{aligned}$$
(32)

Finally, we derive the limit of the previous relationship for \(t \rightarrow \infty \). Using formula (5) we obtain

$$\begin{aligned} \lim _{t \rightarrow \infty } \mathrm {Var}(\tilde{S}(t))= & {} 2\mu ^2\lambda \tau \int _{0}^\infty \mathrm{e}^{-\frac{2x}{\tau }}\sum _{k=1}^{\infty }\int _{0}^\infty \mathrm{e}^{-\frac{y}{\tau }}f_k(y)\,\mathrm {d}y\,\mathrm {d}x\nonumber \\&-\, \mu ^2\lambda ^2\tau ^2+ \frac{1}{2}\mu ^2\lambda \tau + \frac{1}{2}\sigma ^2\lambda \tau \nonumber \\= & {} \frac{\mu ^2\lambda \tau }{1-\fancyscript{L}\{f\}(1/\tau )} - \mu ^2\lambda ^2\tau ^2 - \frac{1}{2}\mu ^2\lambda \tau \nonumber \\&+\, \frac{1}{2}\sigma ^2\lambda \tau . \end{aligned}$$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajdl, K., Lansky, P. Stein’s neuronal model with pooled renewal input. Biol Cybern 109, 389–399 (2015). https://doi.org/10.1007/s00422-015-0650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-015-0650-x

Keywords

Navigation