Skip to main content
Log in

Spike width and frequency alter stability of phase-locking in electrically coupled neurons

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The stability of phase-locked states of electrically coupled type-1 phase response curve neurons is studied using piecewise linear formulations for their voltage profile and phase response curves. We find that at low frequency and/or small spike width, synchrony is stable, and antisynchrony unstable. At high frequency and/or large spike width, these phase-locked states switch their stability. Increasing the ratio of spike width to spike height causes the antisynchronous state to transition into a stable synchronous state. We compute the interaction function and the boundaries of stability of both these phase-locked states, and present analytical expressions for them. We also study the effect of phase response curve skewness on the boundaries of synchrony and antisynchrony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez VA, Chow CC, Van Bockstaele EJ, Williams JT (2002) Frequency-dependent synchrony in locus ceruleus: role of electrotonic coupling. Proc Natl Acad Sci USA 99:4032–4036

    Article  PubMed  CAS  Google Scholar 

  • Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90:2987–3000

    Article  PubMed  Google Scholar 

  • Beierlein M, Gibson JR, Connors BW (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 3:904–910

    Article  PubMed  CAS  Google Scholar 

  • Bem T, Hallam J, Meyrand P, Rinzel J (2006) Electrical coupling and bistability in inhibitory neuronal networks. Biocybern Biomed Eng 26:3–14

    Google Scholar 

  • Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511

    Article  PubMed  CAS  Google Scholar 

  • Brown E, Moehlis J, Holmes P (2004) On the phase reduction and response dynamics of neural oscillator populations. Neural Comput 16:673–715

    Article  PubMed  Google Scholar 

  • Chow CC, Kopell N (2000) Dynamics of spiking neurons with electrical coupling. Neural Comput 12:1643–1678

    Article  PubMed  CAS  Google Scholar 

  • Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418

    Google Scholar 

  • Cymbalyuk G, Nikolaev E, Borisyuk R (1994) In-phase and antiphase self-oscillations in a model of two electrically coupled pacemakers. Biol Cybern 71:153–160

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout GB, Kopell N (1984) Frequency plateaus in a chain of weakly coupled oscillators I. SIAM J Math Anal 15:215–237

    Article  Google Scholar 

  • Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46:233–253

    Article  Google Scholar 

  • Ermentrout GB, Kopell B (1991) Multiple pulse interactions and averaging in systems of coupled neural oscillators. J Math Biol 29:195–217

    Article  Google Scholar 

  • Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput 8:979–1001

    Google Scholar 

  • Ermentrout B, Pascal M, Gutkin B (2001) The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comput 13:1285–1310

    Article  PubMed  CAS  Google Scholar 

  • Fink CG, Booth V, Zochowski M (2011) Cellularly-driven differences in network synchronization propensity are differentially modulated by firing frequency. PLoS Comput Biol 7:e1002062

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Fukai T, Kitano K (2012) Influences of membrane properties on phase response curve and synchronization stability in a model globus pallidus neuron. J Comput Neurosci 32:539–553

    Article  PubMed  Google Scholar 

  • Goel P, Ermentrout B (2002) Synchrony, stability, and firing patterns in pulse-coupled oscillators. Phys D Nonlinear Phenom 163: 191–216

    Google Scholar 

  • Gutkin BS, Ermentrout GB, Reyes AD (2005) Phase-response curves give the responses of neurons to transient inputs. J Neurophysiol 94:1623–1635

    Article  PubMed  Google Scholar 

  • Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural Comput 7:307–337

    Article  PubMed  CAS  Google Scholar 

  • Hansel D, Mato G, Pfeuty B (2012) The role of intrinsic cell properties in synchrony of neurons interacting via electrical synapses. In: Schultheiss NW, Prinz AA, Butera, RJ (eds) Phase response curves in neuroscience. Springer, New York, pp 361–398

  • Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer, Berlin

  • Kita H, Kosaka T, Heizmann CW (1990) Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res 536:1–15

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Book  Google Scholar 

  • Kuramoto Y, Nishikawa I (1987) Statistical macrodynamics of large dynamical-systems. Case of a phase-transition in oscillator communities. J Stat Phys 49:569–605

    Article  Google Scholar 

  • Ladenbauer J, Augustin M, Shiau L, Obermayer K (2012) Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons. PLoS Comput Biol 8:e1002478

    Article  PubMed  CAS  Google Scholar 

  • Lewis TJ (2003) Phase-locking in electrically coupled non-leaky integrate-and-fire neurons. Discrete and continuous dynamical systems-series B, Supplement volume, pp 554–562

  • Lewis TJ, Skinner FK (2012) Understanding activity in electrical coupled networks using PRCs and the theory of weakly coupled oscillators. In: Schultheiss NW, Prinz AA, Butera RJ (eds) Phase response curves in neuroscience. Springer, New York, pp 329–359

  • Lewis TJ, Rinzel J (2003) Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J Comput Neurosci 14:283–309

    Article  PubMed  Google Scholar 

  • Mancilla JG, Lewis TJ, Pinto DJ, Rinzel J, Connors BW (2007) Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J Neurosci 27:2058–2073

    Article  PubMed  CAS  Google Scholar 

  • Merriam EB, Netoff TI, Banks MI (2005) Bistable network behavior of layer I interneurons in auditory cortex. J Neurosci 25: 6175–6186

    Google Scholar 

  • Montoro RJ, Yuste R (2004) Gap junctions in developing neocortex: a review. Brain Res Rev 47:216–226

    Google Scholar 

  • Neltner L, Hansel D (2001) On synchrony of weakly coupled neurons at low firing rate. Neural Comput 13:765–774

    Google Scholar 

  • Netoff TI, Banks MI, Dorval AD, Acker CD, Haas JS, Kopell N, White JA (2005) Synchronization in hybrid neuronal networks of the hippocampal formation. J Neurophysiol 93:1197–1208

    Article  PubMed  Google Scholar 

  • Neu JC (1979a) Coupled chemical oscillators. SIAM J Appl Math 37:307–315

    Google Scholar 

  • Neu JC (1979b) Chemical waves and the diffusive coupling of limit cycle oscillators. SIAM J Appl Math 36:509–515

    Google Scholar 

  • Nomura M, Fukai T, Aoyagi T (2003) Synchrony of fast-spiking interneurons interconnected by gabaergic and electrical synapses. Neural Comput 15:2179–2198

    Article  PubMed  Google Scholar 

  • Ostojic S, Brunel N, Hakim V (2009) Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. J Computat Neurosci 26:369–392

    Article  Google Scholar 

  • Pfeuty B, Mato G, Golomb D, Hansel D (2003) Electrical synapses and synchrony: the role of intrinsic currents. J Neurosci 23:6280–6294

    PubMed  CAS  Google Scholar 

  • Preyer AJ, Butera RJ (2005) Neuronal oscillators in Aplysia californica that demonstrate weak coupling in vitro. Phys Rev Lett 95:138103

    Google Scholar 

  • Reddy DVR, Sen A, Johnston GL (2000) Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators. Phys Rev Lett 85:3381–3384

    Google Scholar 

  • Saint-Amant L, Drapeau P (2001) Synchronization of an embryonic network of identified spinal interneurons solely by electrical coupling. Neuron 31:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss NW, Edgerton JR, Jaeger D (2010) Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. J Neurosci 30:2767–2782

    Article  PubMed  CAS  Google Scholar 

  • Schwemmer MA, Lewis TJ (2012) The robustness of phase-locking in neurons with dendro-dendritic electrical coupling. J Math Biol. doi:10.1007/s00285-012-0635-5

  • Sherman A, Rinzel J (1992) Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc Natl Acad Sci USA 89:2471–2474

    Article  PubMed  CAS  Google Scholar 

  • Skinner FK, Zhang L, Velazquez JL, Carlen PL (1999) Bursting in inhibitory interneuronal networks: a role for gap-junctional coupling. J Neurophysiol 81:1274–1283

    Google Scholar 

  • Smeal RM, Ermentrout GB, White JA (2010) Phase-response curves and synchronized neural networks. Philos Trans R Soc Lond B Biol Sci 365:2407–2422

    Article  PubMed  Google Scholar 

  • Stiefel KM, Gutkin BS, Sejnowski TJ (2008) Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons. PLoS One 3:e3947

    Google Scholar 

  • Terman D, Lee E, Rinzel J, Bem T (2011) Stability of anti-phase and in-phase locking by electrical coupling but not fast inhibition alone. SIAM J Appl Dyn Syst 10:1127–1153

    Article  Google Scholar 

  • Tsubo Y, Takada M, Reyes AD, Fukai T (2007) Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex. Eur J Neurosci 25:3429–3441

    Article  PubMed  Google Scholar 

  • van Vreeswijk C, Abbott LF, Ermentrout GB (1994) When inhibition not excitation synchronizes neural firing. J Comput Neurosci 1:313–321

    Google Scholar 

  • Varona P, Torres JJ, Abarbane HDI, Rabinovich MI, Elson RC (2001) Dynamics of two electrically coupled chaotic neurons: experimental observations and model analysis. Biol Cybern 84:91–101

    Google Scholar 

  • Venance L, Rozov A, Blatow M, Burnashev N, Feldmeyer D, Monyer H (2000) Connexin expression in electrically coupled postnatal rat brain neurons. Proc Natl Acad Sci USA 97:10260–10265

    Article  PubMed  CAS  Google Scholar 

  • Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16:15–42

    Article  PubMed  CAS  Google Scholar 

  • Yaksi E, Wilson RI (2010) Electrical coupling between olfactory glomeruli. Neuron 67:1034–1047

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by NIH grant NS047085. We thank Texas Advanced Computing Center at University of Texas, Austin, and Computational Systems Biology Core at University of Texas at San Antonio for computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramana Dodla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodla, R., Wilson, C.J. Spike width and frequency alter stability of phase-locking in electrically coupled neurons. Biol Cybern 107, 367–383 (2013). https://doi.org/10.1007/s00422-013-0556-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-013-0556-4

Keywords

Navigation