Skip to main content

Advertisement

Log in

Palisade endings and proprioception in extraocular muscles: a comparison with skeletal muscles

  • Prospects
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This article describes current views on motor and sensory control of extraocular muscles (EOMs) based on anatomical data. The special morphology of EOMs, including their motor innervation, is described in comparison to classical skeletal limb and trunk muscles. The presence of proprioceptive organs is reviewed with emphasis on the palisade endings (PEs), which are unique to EOMs, but the function of which is still debated. In consideration of the current new anatomical data about the location of cell bodies of PEs, a hypothesis on the function of PEs in EOMs and the multiply innervated muscle fibres they are attached to is put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alvarado-Mallart RM, Pincon Raymond M (1979) The palisade endings of cat extraocular muscles: a light and electron microscope study. Tissue Cell 11: 567–584

    Article  CAS  PubMed  Google Scholar 

  • Baker KG (1992) A contemporary view of the phylogenetic history of eye muscles and motoneurons. In: Shimazu H, Shinoda Y (eds). Vestibular control of eye, head and body movements, vol 1. Japan Scientific Societies Press, Tokyo; Karger, Basel, pp 3–19

  • Balslev D, Miall C (2008) Eye position representation in human anterior parietal cortex. J Neurosci 28: 8968–8972

    Article  CAS  PubMed  Google Scholar 

  • Hunt CC (1974) The physiology of muscle receptors, In: Barker D, Hunt CC, McIntyre AK (eds) Handbook of sensory physiology, vol III/2 Springer, Berlin, pp 191–234

    Google Scholar 

  • Billig I, Buisseret-Delmas C, Buisseret P (1997) Identification of nerve endings in cat extraocular muscles. Anat Rec 248: 566–575

    Article  CAS  PubMed  Google Scholar 

  • Blumer R, Lukas JR, Wasicky R, Mayr R (2000) Presence and morphological variability of Golgi tendon organs in the distal portion of sheep extraocular muscle. Anat Rec 258: 359–368

    Article  CAS  PubMed  Google Scholar 

  • Blumer R, Wasicky R, Brugger PC, Hoetzenecker W, Wicke WLM, Lukas JR (2001) Number, distribution, and morphologic particularities of encapsulated proprioceptors in pig extraocular muscles. Invest Ophthalmol Vis Sci 42: 3085–3094

    CAS  PubMed  Google Scholar 

  • Blumer R, Konakci KZ, Brugger PC, Blumer MJF, Moser D, Schoefer C, Lukas J-R, Streicher J (2003) Muscle spindles and Golgi tendon organs in bovine calf extraocular muscle studied by means of double-fluorescent labeling, electron microscopy, and three-dimensional reconstruction. Exp Eye Res 77: 447–462

    Article  CAS  PubMed  Google Scholar 

  • Blumer R, Konakci KZ, Streicher J (2006) Proprioception in the extraocular muscles of mammals and man. Strabismus 14: 101–106

    Article  PubMed  Google Scholar 

  • Blumer R, Konakci KZ, Pomikal C, Wieczorek G, Lukas JR, Streicher J (2009) Palisade endings: cholinergic sensory organs or effector organs?. Invest Ophthalmol Vis Sci 50: 1176–1186

    Article  PubMed  Google Scholar 

  • Boyd IA (1980) The isolated mammalian muscle spindle. Trends Neurosci 3: 258–265

    Article  Google Scholar 

  • Brindley GS, Merton PA (1960) The absence of position sense in the human eye. J Physiol 153: 127–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Browne JS (1975) The responses of muscle spindles in sheep extraocular muscles. J Physiol 251: 483–496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Browne JS (1976) The contractile properties of slow muscle fibres in sheep extraocular muscle. J Physiol 254: 535–550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruenech JR, Ruskell GL (2001) Muscle spindles in extraocular muscles of human infants. Cells Tissue Org 169: 388–394

    Article  CAS  Google Scholar 

  • Buisseret P (1995) Influence of extraocular muscle proprioception on vision. Physiol Rev 75: 323–338

    CAS  PubMed  Google Scholar 

  • Büttner-Ennever JA (2006) The extraocular motor nuclei: organization and functional neuroanatomy. Prog Brain Res 151: 95–125

    Article  PubMed  Google Scholar 

  • Büttner-Ennever JA, Horn AKE (2002) The neuroanatomical basis of oculomotor disorders: the dual motor control of extraocular muscles and its possible role in proprioception. Curr Opin Neurol 15: 35–43

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Horn AKE, Scherberger H, D’Ascanio P (2001) Motoneurons of twitch and non twitch extraocular muscle fibers in the abducens, trochlear, and oculomotor nuclei of monkeys. J Comp Neurol 438: 318–335

    Article  PubMed  Google Scholar 

  • Büttner-Ennever JA, Horn AKE, Graf W, Ugolini G (2002) Modern concepts of brainstem anatomy. Ann NY Acad Sci 956: 75–84

    Article  PubMed  Google Scholar 

  • Büttner-Ennever JA, Konakci KZ, Blumer R (2006) Sensory control of extraocular muscles. Prog Brain Res 151: 81–93

    Article  PubMed  Google Scholar 

  • Capra NF, Dessem D (1992) Central connections of trigeminal primary afferent neurons: topographical and functional consideration. Crit Rev Oral Biol Med 4: 1–52

    CAS  PubMed  Google Scholar 

  • Carpenter RHS (1988) Movement of the eyes, 2nd edn. Pion, London

    Google Scholar 

  • Chiarandini DJ, Stefani E (1979) Electrophysiological identification of two types of fibres in rat extraocular muscles. J Physiol 290: 453–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cilimbaris PA (1910) Histologische Untersuchungen über die Muskelspindeln der Augenmuskeln. Arch Mikrosk Anat Entwicklungsg 75: 692–747

    Article  Google Scholar 

  • Cooper S, Daniel PM (1949) Muscle spindles in human extrinsic eye muscles. Brain 72: 1–24

    Article  CAS  PubMed  Google Scholar 

  • Dancause N, Taylor MD, Plautz EJ, Radel JD, Whittaker T, Nudo RJ, Feldman AG (2007) A stretch reflex in extraocular muscles of species purportedly lacking muscle spindles. Exp Brain Res 180: 15–21

    Article  PubMed Central  PubMed  Google Scholar 

  • Davidowitz J, Rubinson K, Jacoby J, Philips G (1996) Myofibril size variation along the length of extraocular muscle in rabbit and rat. I: orbital layer. Tissue Cell 28: 63–76

    Article  CAS  PubMed  Google Scholar 

  • Demer JL (2002) The orbital pulley system: a revolution in concepts of orbital anatomy. Ann NY Acad Sci 956: 17–32

    Article  PubMed  Google Scholar 

  • Demer JL, Yeul Oh S, Poukens V (2000) Evidence for active control of rectus extrocular muscle pulleys. Invest Ophthalmol Vis Sci 41: 1280–1290

    CAS  PubMed  Google Scholar 

  • Dogiel AS (1906) Die Endigungen der sensiblen Nerven in den Augenmuskeln und deren Sehnen beim Menschen und den Säugetieren. Arch Mikrosk Anat 68: 501–526

    Article  Google Scholar 

  • Donaldson IML (2000) The functions of the proprioceptors of the eye muscles. Philos Trans R Soc Lond B 355: 1685–1754

    Article  CAS  Google Scholar 

  • Eberhorn AC, Ardelenanu P, Büttner-Ennever JA, Horn AKE (2005) Histochemical differences between motoneurons supplying multiply and singly innervated extraocular muscle fibers. J Comp Neurol 491: 352–366

    Article  PubMed  Google Scholar 

  • Eberhorn AC, Büttner-Ennever JA, Horn AKE (2006) Identification of motoneurons supplying multiply- or singly-innervated extraocular muscle fibers in the rat. Neuroscience 137: 891–903

    Article  CAS  PubMed  Google Scholar 

  • Evinger C (1988) Extraocular motor nuclei: location, morphology and afferents. In: Büttner-Ennever JA (ed) Reviews of oculomotor research, vol 3. Elsevier, Amsterdam, pp 81–117

    Google Scholar 

  • Evinger C, Baker R, McCrea RA (1979) Axon collaterals of cat medial rectus motoneurons. Brain Res 174: 153–160

    Article  CAS  PubMed  Google Scholar 

  • Evinger C, Graf WM, Baker R (1987) Extra- and intracellular HRP analysis of the organization of extraocular motoneurons and internuclear neurons in the guinea pig and rabbit. J Comp Neurol 262: 429–45

    Google Scholar 

  • Fackelmann K, Nouriani A, Horn AK, Büttner-Ennever JA (2008) Histochemical characterisation of trigeminal neurons that innervate monkey extraocular muscles. Prog Brain Res 171: 17–20

    Article  CAS  PubMed  Google Scholar 

  • Fiorentini A, Maffei L (1977) Instability of the eye in the dark and proprioception. Nature 269: 330–331

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC, Burke D (2004) Peripheral motor system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 113–133

    Chapter  Google Scholar 

  • Guthrie BL, Porter JD, Sparks DL (1983) Corollary discharge provides accurate eye position information to the oculomotor system. Science 221: 1193–1195

    Article  CAS  PubMed  Google Scholar 

  • Harker DW (1972) The structure and innervation of sheep superior rectus and levator palpebrae extraocular eye muscles. II: muscle spindles. Invest Ophthalmol Vis Sci 11: 970–979

    CAS  Google Scholar 

  • Horn AK, Leigh RJ (2011) The anatomy and physiology of the ocular motor system. Handb Clin Neurol 102: 21–69

    Article  PubMed  Google Scholar 

  • Huber GC (1900) Sensory nerve terminations in the tendons of the extrinsic eye-muscles of the cat. J Comp Neurol 10: 152–158

    Article  Google Scholar 

  • Hunt CC (1974) The physiology of muscle receptors. In: Barker D, Hunt CC, McIntyre AK (eds) Handbook of sensory physiology, vol III/2. Springer, Berlin, pp 191–234

    Google Scholar 

  • Jacoby J, Chiarandini DJ, Stefani E (1989) Electrical properties and innervation of fibers in the orbital layer of rat extraocular muscles. J Neurophysiol 61: 116–125

    CAS  PubMed  Google Scholar 

  • Jami L (1992) Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol Rev 72: 623–666

    CAS  PubMed  Google Scholar 

  • Keller EL, Robinson DA (1971) Absence of a stretch reflex in extraocular muscles of the monkey. J Neurophysiol 34: 908–919

    CAS  PubMed  Google Scholar 

  • Konakci KZ, Streicher J, Hoetzenecker W, Blumer MJF, Lukas J-R, Blumer R (2005a) Molecular characteristics suggest an effector function of palisade endings in extraocular muscles. Invest Ophthalmol Vis Sci 46: 155–165

    Article  PubMed  Google Scholar 

  • Konakci KZ, Streicher J, Hoetzenecker W, Haberl I, Blumer MJF, Wieczorek G, Meingassner JG, Paal SL, Holzinger D, Lukas J-R, Blumer R (2005) Palisade endings in extraocular muscles of the monkey are immunoreactive for choline acetyltransferase and vesicular acetylcholine transporter. Invest Ophthalmol Vis Sci 46((12): 4548–4554

    Article  PubMed  Google Scholar 

  • Kubota M (1988) Ultrastructural observations on muscle spindles in extraocular muscles of pig. Anat Anz 165: 205–228

    CAS  PubMed  Google Scholar 

  • Kubota M, Masego I (1977) Muscle spindle supply to the human jaw muscle. J Dent Res 56: 901–909

    Article  CAS  PubMed  Google Scholar 

  • Leigh RJ, Zee DS (2006) The neurology of eye movements, vol 4. Oxford University Press, New York

    Google Scholar 

  • Lewis RF, Zee DS, Gaymard BM, Guthrie BL (1994) Extraocular muscle proprioception functions in the control of ocular alignment and eye movement conjugacy. J Neurophysiol 72: 1028–1031

    CAS  PubMed  Google Scholar 

  • Lewis RF, Gaymard BM, Tamargo RJ (1998) Efference copy provides the eye position information required for visually guided reaching. J Neurophysiol 80: 1605–1608

    CAS  PubMed  Google Scholar 

  • Lewis RL, Zee DZ, Hayman MH, Tamargo RT (2001) Oculomotor function in the rhesus monkey after deafferentation of the extraocular muscles. Exp Brain Res 141: 349–358

    Article  CAS  PubMed  Google Scholar 

  • Lichtman J, Jhaveri S, Frank E (1984) Anatomical basis of specific connections between sensory axons and motor neurons in the brachial spinal cord of the bullfrog. J Neurosci 4: 1754–1763

    CAS  PubMed  Google Scholar 

  • Lienbacher K, Mustari M, Ying HS, Büttner-Ennever JA, Horn AKE (2011a) Do palisade endings in extraocular muscles arise from neurons in the motor nuclei?. Invest Ophthalmol Vis Sci 52: 2510–2519

    Article  PubMed Central  PubMed  Google Scholar 

  • Lienbacher K, Mustari M, Hess B, Büttner-Ennever J, Horn AKE (2011b) Is there any sense in the palisade endings of eye muscles?. Ann NY Acad Sci 1233: 1–7

    Article  PubMed  Google Scholar 

  • Lukas JR, Aigner M, Blumer R, Heinzl H, Mayr R (1994) Number and distribution of neuromuscular spindles in human extraocular muscles. Invest Ophthalmol Vis Sci 35: 4317–4327

    CAS  PubMed  Google Scholar 

  • Lukas JR, Blumer R, Denk M, Baumgartner I, Neuhuber W, Mayr R (2000) Innervated myotendinous cylinders in human extraocular muscles. Invest Ophthalmol Vis Sci 41: 2422–2431

    CAS  PubMed  Google Scholar 

  • Maier A, Desantis M, Eldred E (1974) The occurence of muscle spindles in extraocular muscles of various vertebrates. J Morph 143: 397–408

    Article  CAS  PubMed  Google Scholar 

  • Matthews PBC (1972) Mammalian muscle receptors and their central actions. Arnold, London

    Google Scholar 

  • Mihailoff GA, Haines D (2005) Motor system I: peripheral sensory, brainstem, and spinal influence on anterior horn neurons. In: Haines D (ed) Fundamental neuroscience for basic and clinical applications, 3rd edn. Churchill Livingstone, Philadelphia pp 379–393

    Google Scholar 

  • Miller JM, Demer JL, Poukens V, Pavlovski DS, Nguyen HN, Rossi EA (2003) Extraocular connective tissue architecture. J Vis 3: 240–251

    Article  PubMed  Google Scholar 

  • Morgan DL, Proske U (1984) Vertebrate slow muscle: its structure, pattern of innervation, and mechanical properties. Physiol Rev 64: 103–138

    CAS  PubMed  Google Scholar 

  • Nitatori T (1988) The fine structure of human Golgi tendon organs as studied by three-dimensional reconstruction. J Neurocytol 17(1): 27–41

    Article  CAS  PubMed  Google Scholar 

  • Ogata T (1988) Structure of motor endplates in the different fiber types of vertebrate skeletal muscles. Arch Histol Cytol 51: 385–424

    Article  CAS  PubMed  Google Scholar 

  • Porter JD (1986) Brainstem terminations of extraocular muscle primary afferent neurons in the monkey. J Comp Neurol 247: 133–143

    Article  CAS  PubMed  Google Scholar 

  • Porter JD, Guthrie BL, Sparks DL (1983) Innervation of monkey extraocular muscles: localization of sensory and motor neurons by retrograde transport of horseradish peroxidase. J Comp Neurol 218: 208–219

    Article  CAS  PubMed  Google Scholar 

  • Porter JD, Baker RS, Ragusa RJ, Brueckner JK (1995) Extraocular muscles: basic and clinical aspects of structure and function. Surv Ophthalmol 39(6): 451–484

    Article  CAS  PubMed  Google Scholar 

  • Richmond FJR, Johnston WSW, Baker RS, Steinbach MJ (1984) Palisade endings in human extraocular muscle. Invest Ophthalmol Vis Sci 25: 471–476

    CAS  PubMed  Google Scholar 

  • Rossi AC, Mammucari C, Argentini C, Reggiani C, Schiaffino S (2010) Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J Physiol 588(2): 353–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rungaldier S, Heiligenbrunner S, Mayer R, Hanefl-Krivanek C, Lipowec M, Streicher J, Blumer R (2009) Ultrastructural and molecular biologic comparison of classic proprioceptors and palisade endings in sheep extraocular muscles. Invest Ophthalmol Vis Sci 50(12): 5697–5706

    Article  PubMed  Google Scholar 

  • Ruskell GL (1978) The fine structure of innervated myotendinous cylinders in extraocular muscles in rhesus monkey. J Neurocytol 7: 693–708

    Article  CAS  PubMed  Google Scholar 

  • Ruskell GL (1979) The incidence and variety of Golgi tendon organs in extraocular muscles of the rhesus monkey. J Neurocytol 8: 639–653

    Article  CAS  PubMed  Google Scholar 

  • Ruskell GL (1989) The fine structure of human extraocular muscle spindles and their potential proprioceptive capacity. J Anat 167: 199–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruskell GL (1999) Extraocular muscle proprioceptors and proprioception. Prog Retin Eye Res 18(3): 269–291

    Article  CAS  PubMed  Google Scholar 

  • Ruskell GL, Kjellevold Haugen IB, Bruenech JR, Vander Werf F (2005) Double insertions of extraocular rectus muscles in man and the pulley theory. J Anat 206: 295–306

    Article  PubMed Central  PubMed  Google Scholar 

  • Sas J, Scháb R (1952) Die sogenannten “Palisaden-Endigungen” der Augenmuskeln. Acta Morph Acad Sci 2: 259–266

    Google Scholar 

  • Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91: 1447–1531

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, Gundersen K, Lomo T (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10(3): 197–205

    Article  CAS  PubMed  Google Scholar 

  • Sengul G, Watson C (2011) Spinal cord: regional anatomy, cytoarchitecture and chemiarchitecture. In: Paxinos G, Mai JK (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 186–232

    Google Scholar 

  • Sherrington CS (1906) On the proprioceptive system, especially in its reflex aspect. Brain 29: 16

    Google Scholar 

  • Spencer RF, Porter JD (2006) Biological organization of the extraocular muscles. Prog Brain Res 151: 43–80

    Article  PubMed  Google Scholar 

  • Straka H, Gilland E, Baker R (1998) Rhombomeric organization of brainstem motor neurons in larval frogs. Biol Bull 195(2): 220–222

    Article  CAS  PubMed  Google Scholar 

  • Torrella JR, Fouces V, Palomeque J, Viscor G (1993) Innervation distribution pattern, nerve ending structure, and fiber types in pigeon skeletal muscle. Anat Rec 237(2): 178–186

    Article  CAS  PubMed  Google Scholar 

  • Tozer FM, Sherrington CS (1910) Receptors and afferents of the third, fourth and sixth cranial nerves. Proc Soc Lond Ser 82: 451–457

    Google Scholar 

  • Ugolini G, Klam F, Doldan Dans M, Dubayle D, Brandi A-M, Büttner-Ennever JA, Graf W (2006) Horizontal eye movement networks in primates as revealed by retrograde transneuronal transfer of rabies virus: Differences in monosynaptic input to “slow” and “fast” abducens motoneurons. J Comp Neurol 498: 762–785

    Article  PubMed  Google Scholar 

  • von Helmholtz H (1867) Handbuch der Physiologischen Optik, 1st edn. Voss, Hamburg

    Google Scholar 

  • von Holst E (1954) Relations between the central nervous system and peripheral organs. Br J Anim Behav 2: 89–94

    Article  Google Scholar 

  • Wang X, Zhang M, Cohen IS, Goldberg ME (2007) The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat Neurosci 10(5): 640–646

    Article  CAS  PubMed  Google Scholar 

  • Wasicky R, Zhya-Ghazvini F, Blumer R, Lukas JR, Mayr R (2000) Muscle fiber types of human extraocular muscles: a histochemical and immunohistochemical study. Invest Ophthal Vis Sci 41: 980–990

    CAS  PubMed  Google Scholar 

  • Wörl J, Neuhuber WL (2005) Enteric co-innervation of motor endplates in the esophagus: state of the art ten years later. Hist Cell Biol 123: 117–130

    Article  Google Scholar 

  • Zelená J, Soukup T (1977) The development of Golgi tendon organs. J Neurocytol 6: 171–194

    Article  PubMed  Google Scholar 

  • Zimmermann L, May PJ, Pastor ÁM, Streicher J, Blumer R (2011) Evidence that the extraocular motor nuclei innervate monkey palisade endings. Neurosci Lett 489(2): 89–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja K. E. Horn.

Additional information

This article forms part of a special issue of Biological Cybernetics entitled “Multimodal and Sensorimotor Bionics”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lienbacher, K., Horn, A.K.E. Palisade endings and proprioception in extraocular muscles: a comparison with skeletal muscles. Biol Cybern 106, 643–655 (2012). https://doi.org/10.1007/s00422-012-0519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0519-1

Keywords

Navigation