Skip to main content
Log in

Phase-linking and the perceived motion during off-vertical axis rotation

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Human off-vertical axis rotation (OVAR) in the dark typically produces perceived motion about a cone, the amplitude of which changes as a function of frequency. This perception is commonly attributed to the fact that both the OVAR and the conical motion have a gravity vector that rotates about the subject. Little-known, however, is that this rotating-gravity explanation for perceived conical motion is inconsistent with basic observations about self-motion perception: (a) that the perceived vertical moves toward alignment with the gravito-inertial acceleration (GIA) and (b) that perceived translation arises from perceived linear acceleration, as derived from the portion of the GIA not associated with gravity. Mathematically proved in this article is the fact that during OVAR these properties imply mismatched phase of perceived tilt and translation, in contrast to the common perception of matched phases which correspond to conical motion with pivot at the bottom. This result demonstrates that an additional perceptual rule is required to explain perception in OVAR. This study investigates, both analytically and computationally, the phase relationship between tilt and translation at different stimulus rates—slow (45°/s) and fast (180°/s), and the three-dimensional shape of predicted perceived motion, under different sets of hypotheses about self-motion perception. We propose that for human motion perception, there is a phase-linking of tilt and translation movements to construct a perception of one’s overall motion path. Alternative hypotheses to achieve the phase match were tested with three-dimensional computational models, comparing the output with published experimental reports. The best fit with experimental data was the hypothesis that the phase of perceived translation was linked to perceived tilt, while the perceived tilt was determined by the GIA. This hypothesis successfully predicted the bottom-pivot cone commonly reported and a reduced sense of tilt during fast OVAR. Similar considerations apply to the hilltop illusion often reported during horizontal linear oscillation. Known response properties of central neurons are consistent with this ability to phase-link translation with tilt. In addition, the competing “standard” model was mathematically proved to be unable to predict the bottom-pivot cone regardless of the values used for parameters in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albright TD (1989) Centrifugal directional bias in the middle temporal visual area (MT) of the macaque. Vis Neurosci 2: 177–188

    CAS  PubMed  Google Scholar 

  • Anastasopoulos D, Bronstein AM (1999) A case of thalamic syndrome: somatosensory influences on visual orientation. J Neurol Neurosurg Psychiatry 67: 390–394

    CAS  PubMed  Google Scholar 

  • Angelaki DE (1991) Dynamic polarization vector of spatially tuned neurons. IEEE Trans Biomed Eng 38: 1053–1060

    CAS  PubMed  Google Scholar 

  • Angelaki DE (1992) Spatio-temporal convergence (STC) in otolith neurons. Biol Cybern 67: 83–96

    CAS  PubMed  Google Scholar 

  • Angelaki DE, Dickman JD (2000) Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J Neurophysiol 84: 2113–2132

    CAS  PubMed  Google Scholar 

  • Angelaki DE, Bush GA, Perachio AA (1993) Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons. J Neurosci 13: 1403–1417

    CAS  PubMed  Google Scholar 

  • Angelaki DE, Shaikh AG, Green AM, Dickman JD (2004) Neurons compute internal models of the physical laws of motion. Nature 430: 560–564

    CAS  PubMed  Google Scholar 

  • Averbeck BB, Latham PE, Pouget A (2006) Neural correlations, population coding and computation. Nat Rev Neurosci 7: 358–366

    CAS  PubMed  Google Scholar 

  • Baker JF, Perlmutter SI, Peterson BW, Rude SA, Robinson FR (1987) Simultaneous opposing adaptive changes in cat vestibulo-ocular reflex direction for two body orientations. Exp Brain Res 69: 220–224

    CAS  PubMed  Google Scholar 

  • Baloh RW, Halmagyi GM (1996) Disorders of the vestibular system. Oxford University Press, Oxford

    Google Scholar 

  • Benson AJ, Diaz E, Farrugia P (1975) The perception of body orientation relative to a rotating linear acceleration vector. Fortschr Zool 23: 264–274

    CAS  PubMed  Google Scholar 

  • Bockisch CJ, Straumann D, Haslwanter T (2003) Eye movements during multi-axis whole-body rotations. J Neurophysiol 89: 355–366

    PubMed  Google Scholar 

  • Borah J, Young LR, Curry RE (1988) Optimal estimator model for human spatial orientation. Ann N Y Acad Sci 545: 51–73

    CAS  PubMed  Google Scholar 

  • Bos JE, Bles W (2002) Theoretical considerations on canal-otolith interaction and an observer model. Biol Cybern 86: 191–207

    PubMed  Google Scholar 

  • Bottini G, Sterzi R, Paulesu E, Vallar G, Cappa SF, Erminio F, Passingham RE, Frith CD, Frackowiak RS (1994) Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res 99: 164–169

    CAS  PubMed  Google Scholar 

  • Boyle R, Belton T, McCrea RA (1996) Responses of identified vestibulospinal neurons to voluntary eye and head movements in the squirrel monkey. Ann N Y Acad Sci 781: 244–263

    CAS  PubMed  Google Scholar 

  • Brandt T, Dieterich M (1999) The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci 871: 293–312

    CAS  PubMed  Google Scholar 

  • Brandt T, Dieterich M, Danek A (1994) Vestibular cortex lesions affect the perception of verticality. Ann Neurol 35: 403–412

    CAS  PubMed  Google Scholar 

  • Brandt T, Glasauer S, Dieterich M (2002) Vestibular brainstem disorders: clinical syndromes in roll plane and their model simulation. Mov Disord 17(Suppl 2): S58–62

    PubMed  Google Scholar 

  • Bril B, Brenière Y (1993) Posture and independent locomotion in early childhood: learning to walk or learning postural dynamic control?. In: Savelsbergh GJP (eds) The development of coordination in infancy. Elsevier, Amsterdam, pp 337–358

    Google Scholar 

  • Clark B, Graybiel A (1966) Factors contributing to the delay in the perception of the oculogravic illusion. Am J Psychol 79: 377–388

    CAS  PubMed  Google Scholar 

  • Cohen L (1971) Synchronous bimanual movements performed by homologous and non-homologous muscles. Percept Mot Skills 32: 639–644

    CAS  PubMed  Google Scholar 

  • Correia MJ, Guedry FE Jr (1966) Modification of vestibular responses as a function of rate of rotation about an Earth-horizontal axis. Acta Otolaryngol 62: 297–308

    CAS  PubMed  Google Scholar 

  • Curthoys IS (1996) The delay of the oculogravic illusion. Brain Res Bull 40: 407–412

    CAS  PubMed  Google Scholar 

  • Denise P, Darlot C, Droulez J, Cohen B, Berthoz A (1988) Motion perceptions induced by off-vertical axis rotation (OVAR) at small angles of tilt. Exp Brain Res 73: 106–114

    CAS  PubMed  Google Scholar 

  • Dickman JD, Angelaki DE (2002) Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J Neurophysiol 88: 3518–3533

    PubMed  Google Scholar 

  • Dickman JD, Angelaki DE (2004) Dynamics of vestibular neurons during rotational motion in alert rhesus monkeys. Exp Brain Res 155: 91–101

    PubMed  Google Scholar 

  • Dieterich M, Brandt T (1993) Ocular torsion and tilt of subjective visual vertical are sensitive brainstem signs. Ann Neurol 33: 292–299

    CAS  PubMed  Google Scholar 

  • Droulez J, Darlot C (1989) The geometric and dynamic implications of the coherence constraints in three-dimensional sensorimotor interactions. In: Jeannerod M (eds) Attention and performance. Lawrence Erlbaum, Hillsdale, pp 495–526

    Google Scholar 

  • Fanelli R, Raphan T, Schnabolk C (1990) Neural network modeling of eye compensation during off-vertical-axis rotation. Neural Netw 3: 265–276

    Google Scholar 

  • Fernández C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34: 661–675

    PubMed  Google Scholar 

  • Foster IZ, Hanes DA, Barmack NH, McCollum G (2007) Spatial symmetries in vestibular projections to the uvula-nodulus. Biol Cybern 96: 439–453

    PubMed  Google Scholar 

  • Fredrickson JM, Scheid P, Figge U, Kornhuber HH (1966) Vestibular nerve projection to the cerebral cortex of the rhesus monkey. Exp Brain Res 2: 318–327

    CAS  PubMed  Google Scholar 

  • Glasauer S (1995) Linear acceleration perception: frequency dependence of the hilltop illusion. Acta Otolaryngol Suppl 520: 37–40

    PubMed  Google Scholar 

  • Goldberg JM, Fernández C (1984) The vestibular system. In: Darian-Smith I (eds) The nervous system, vol III. American Physiological Society, Bethesda, pp 977–1022

    Google Scholar 

  • Grant W, Best W (1987) Otolith-organ mechanics: lumped parameter model and dynamic response. Aviat Space Environ Med 58: 970–976

    CAS  PubMed  Google Scholar 

  • Graybiel A, Brown R (1951) The delay in visual reorientation following exposure to a change in direction of resultant force on a human centrifuge. J Gen Psychol 45: 143–150

    Google Scholar 

  • Green AM, Angelaki DE (2004) An integrative neural network for detecting inertial motion and head orientation. J Neurophysiol 92: 905–925

    PubMed  Google Scholar 

  • Grossberg S, Mingolla E, Pack C (1999) A neural model of motion processing and visual navigation by cortical area MST. Cereb Cortex 9: 878–895

    CAS  PubMed  Google Scholar 

  • Guedry FE Jr (1974) Psychophysics of vestibular sensation. In: Kornhuber HH (eds) Vestibular system. Part 2: psychophysics and applied aspects and general interpretations, vol VI/2. Springer, Berlin, pp 3–154

    Google Scholar 

  • Guedry FE Jr, Stockwell CW, Gilson RD (1971) Comparison of subjective responses to semicircular canal stimulation produced by rotation about different axes. Acta Otolaryngol 72: 101–106

    PubMed  Google Scholar 

  • Guedry FE, Rupert AH, McGrath BJ, Oman CM (1992) The dynamics of spatial orientation during complex and changing linear and angular acceleration. J Vestib Res 2: 259–283

    CAS  PubMed  Google Scholar 

  • Hain TC (1986) A model of the nystagmus induced by off vertical axis rotation. Biol Cybern 54: 337–350

    CAS  PubMed  Google Scholar 

  • Haslwanter T, Jaeger R, Mayr S, Fetter M (2000) Three-dimensional eye-movement responses to off-vertical axis rotations in humans. Exp Brain Res 134: 96–106

    CAS  PubMed  Google Scholar 

  • Hawrylyshyn PA, Rubin AM, Tasker RR, Organ LW, Fredrickson JM (1978) Vestibulothalamic projections in man–a sixth primary sensory pathway. J Neurophysiol 41: 394–401

    CAS  PubMed  Google Scholar 

  • Hixson WC, Niven JI, Correia MJ (1966) Kinematics nomenclature for physiological accelerations. Monograph 14. Naval Aerospace Medical Institute, Pensacola

    Google Scholar 

  • Holly JE (1996) Subject-coincident coordinate systems and sustained motions. Int J Theor Phys 35: 445–473

    Google Scholar 

  • Holly JE (1997) Three-dimensional baselines for perceived self-motion during acceleration and deceleration in a centrifuge. J Vestib Res 7: 45–61

    CAS  PubMed  Google Scholar 

  • Holly JE (2000) Baselines for three-dimensional perception of combined linear and angular self-motion with changing rotational axis. J Vestib Res 10: 163–178

    CAS  PubMed  Google Scholar 

  • Holly JE (2003) Perceptual disturbances predicted in zero-g through three-dimensional modeling. J Vestib Res 13: 173–186

    PubMed  Google Scholar 

  • Holly JE (2004) Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions. J Vestib Res 14: 443–460

    PubMed  Google Scholar 

  • Holly JE, Harmon KJ (2009) Spatial disorientation in gondola centrifuges predicted by the form of motion as a whole in 3-D. Aviat Space Environ Med 80: 125–134

    PubMed  Google Scholar 

  • Holly JE, McCollum G (1996) The shape of self-motion perception—II. Framework and principles for simple and complex motion. Neuroscience 70: 487–513

    CAS  PubMed  Google Scholar 

  • Holly JE, McCollum G, Boyle R (1999) Identification of head motions by central vestibular neurons receiving linear and angular input. Biol Cybern 81: 177–188

    CAS  PubMed  Google Scholar 

  • Holly JE, Pierce SE, McCollum G (2006) Head tilt-translation combinations distinguished at the level of neurons. Biol Cybern 95: 311–326

    PubMed  Google Scholar 

  • Holly JE, Vrublevskis A, Carlson LE (2008) Whole-motion model of perception during forward- and backward-facing centrifuge runs. J Vestib Res 18: 171–186

    PubMed  Google Scholar 

  • Kaptein RG, Van Gisbergen JA (2006) Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation. J Neurophysiol 95: 1936–1948

    PubMed  Google Scholar 

  • Kelso JA (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 246: R1000–1004

    CAS  PubMed  Google Scholar 

  • Kelso JA, Holt KG, Rubin P, Kugler PN (1981) Patterns of human interlimb coordination emerge from the properties of non-linear, limit cycle oscillatory processes: theory and data. J Mot Behav 13: 226–261

    CAS  PubMed  Google Scholar 

  • Klam F (2004) Head movement-related signals and the representation of space in parietal cortex: an electrophysiological study with awake behaving monkeys. Ph.D. Collège de France, University Paris VI, Paris, France

  • Kushiro K, Dai M, Kunin M, Yakushin SB, Cohen B, Raphan T (2002) Compensatory and orienting eye movements induced by off-vertical axis rotation (OVAR) in monkeys. J Neurophysiol 88: 2445–2462

    PubMed  Google Scholar 

  • Lackner JR, DiZio P (1988) Visual stimulation affects the perception of voluntary leg movements during walking. Perception 17: 71–80

    CAS  PubMed  Google Scholar 

  • Lackner JR, Graybiel A (1978) Some influences of touch and pressure cues on human spatial orientation. Aviat Space Environ Med 49: 798–804

    CAS  PubMed  Google Scholar 

  • Laurens J, Droulez J (2007) Bayesian processing of vestibular information. Biol Cybern 96: 389–404

    PubMed  Google Scholar 

  • Mayne R (1974) A systems concept of the vestibular organs. In: Kornhuber HH (eds) Vestibular system. Part 2: psychophysics and applied aspects and general interpretations, vol VI. Springer, Berlin, pp 493–580

    Google Scholar 

  • McCollum G (2007) Spatial symmetry groups as sensorimotor guidelines. J Vestib Res 17: 347–359

    PubMed  Google Scholar 

  • McCollum G, Boyle R (2001) Conditional transitions in gaze dynamics: role of vestibular nuclei in eye-only and eye/head gaze behaviors. Biol Cybern 85: 423–436

    CAS  PubMed  Google Scholar 

  • McCollum G, Boyle R (2004) Rotations in a vertebrate setting: evaluation of the symmetry group of the disynaptic canal-neck projection. Biol Cybern 90: 203–217

    PubMed  Google Scholar 

  • McCollum G, Holroyd C, Castelfranco AM (1995) Forms of early walking. J Theor Biol 176: 373–390

    CAS  PubMed  Google Scholar 

  • McCrea RA, Gdowski GT, Boyle R, Belton T (1999) Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons. J Neurophysiol 82: 416–428

    CAS  PubMed  Google Scholar 

  • McGrath BJ, Guedry FE, Oman CM, Rupert AH (1995) Vestibulo-ocular response of human subjects seated in a pivoting support system during 3 Gz centrifuge stimulation. J Vestib Res 5: 331–347

    CAS  PubMed  Google Scholar 

  • Mechsner F (2004) A psychological approach to human voluntary movements. J Mot Behav 36: 355–370

    PubMed  Google Scholar 

  • Merfeld DM, Zupan LH (2002) Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. J Neurophysiol 87: 819–833

    CAS  PubMed  Google Scholar 

  • Merfeld DM, Young LR, Oman CM, Shelhamer MJ (1993) A multidimensional model of the effect of gravity on the spatial orientation of the monkey. J Vestib Res 3: 141–161

    CAS  PubMed  Google Scholar 

  • Merfeld DM, Zupan L, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398: 615–618

    CAS  PubMed  Google Scholar 

  • Merfeld DM (1995a) Modeling human vestibular responses during eccentric rotation and off vertical axis rotation. Acta Otolaryngol Suppl 520: 354–359

    PubMed  Google Scholar 

  • Merfeld DM (1995b) Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Exp Brain Res 106: 123–134

    CAS  PubMed  Google Scholar 

  • Merfeld DM, Zupan LH, Gifford CA (2001) Neural processing of gravito-inertial cues in humans. II. Influence of the semicircular canals during eccentric rotation. J Neurophysiol 85: 1648–1660

    CAS  PubMed  Google Scholar 

  • Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S (2005a) Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during translation and tilt. J Neurophysiol 94: 186–198

    PubMed  Google Scholar 

  • Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S (2005b) Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined tilt and translation. J Neurophysiol 94: 199–205

    PubMed  Google Scholar 

  • Mergner T, Schweigart G, Botti F, Lehmann A (1998) Eye movements evoked by proprioceptive stimulation along the body axis in humans. Exp Brain Res 120: 450–460

    CAS  PubMed  Google Scholar 

  • Mittelstaedt ML, Jensen W (1999) Centrifugal force affects perception but not nystagmus in passive rotation. Ann N Y Acad Sci 871: 435–438

    CAS  PubMed  Google Scholar 

  • Mittelstaedt ML, Mittelstaedt H (1996) The influence of otoliths and somatic graviceptors on angular velocity estimation. J Vestib Res 6: 355–366

    CAS  PubMed  Google Scholar 

  • Miyamoto T, Fukushima K, Takada T, De Waele C, Vidal PP (2005) Saccular projections in the human cerebral cortex. Ann N Y Acad Sci 1039: 124–131

    PubMed  Google Scholar 

  • Nashner LM, Black FO, Wall C III (1982) Adaptation to altered support and visual conditions during stance: patients with vestibular deficits. J Neurosci 2: 536–544

    CAS  PubMed  Google Scholar 

  • Ormsby CC, Young LR (1977) Integration of semicircular canal and otolith information for multisensory orientation stimuli. Math Biosci 34: 1–21

    Google Scholar 

  • Paige GD, Seidman SH (1999) Characteristics of the VOR in response to linear acceleration. Ann N Y Acad Sci 871: 123–135

    CAS  PubMed  Google Scholar 

  • Park S, Gianna-Poulin C, Black FO, Wood S, Merfeld DM (2006) Roll rotation cues influence roll tilt perception assayed using a somatosensory technique. J Neurophysiol 96: 486–491

    PubMed  Google Scholar 

  • Perlmutter SI, Iwamoto Y, Baker JF, Peterson BW (1999) Spatial alignment of rotational and static tilt responses of vestibulospinal neurons in the cat. J Neurophysiol 82: 855–862

    CAS  PubMed  Google Scholar 

  • Pouget A, Dayan P, Zemel RS (2003) Inference and computation with population codes. Annu Rev Neurosci 26: 381–410

    CAS  PubMed  Google Scholar 

  • Raphan T, Schnabolk C (1988) Modeling slow phase velocity generation during off-vertical axis rotation. Ann N Y Acad Sci 545: 29–50

    CAS  PubMed  Google Scholar 

  • Reymond G, Droulez J, Kemeny A (2002) Visuovestibular perception of self-motion modeled as a dynamic optimization process. Biol Cybern 87: 301–314

    PubMed  Google Scholar 

  • Rock I (1997) The perception of movement. In: Rock I, Palmer S (eds) Indirect perception. MIT Press, Cambridge, pp 209–247

    Google Scholar 

  • Roy JE, Cullen KE (2001) Selective processing of vestibular reafference during self-generated head motion. J Neurosci 21: 2131–2142

    CAS  PubMed  Google Scholar 

  • Schnabolk C, Raphan T (1992) Modeling 3-D slow phase velocity estimation during off-vertical-axis rotation (OVAR). J Vestib Res 2: 1–14

    CAS  PubMed  Google Scholar 

  • Schor RH, Miller AD, Timerick SJ, Tomko DL (1985) Responses to head tilt in cat central vestibular neurons. II. Frequency dependence of neural response vectors. J Neurophysiol 53: 1444–1452

    CAS  PubMed  Google Scholar 

  • Schor RH, Steinbacher BC Jr., Yates BJ (1998) Horizontal linear and angular responses of neurons in the medial vestibular nucleus of the decerebrate cat. J Vestib Res 8: 107–116

    CAS  PubMed  Google Scholar 

  • Seidman SH, Bush G, Paige GD, Tomko DL (1998a) Perception of translational motion in the absence of non-otolith cues. Soc Neurosc Abstr 24(1): 416

    Google Scholar 

  • Seidman SH, Telford L, Paige GD (1998b) Tilt perception during dynamic linear acceleration. Exp Brain Res 119: 307–314

    CAS  PubMed  Google Scholar 

  • Shelhamer M, Robinson DA, Tan HS (1992) Context-specific adaptation of the gain of the vestibulo-ocular reflex in humans. J Vestib Res 2: 89–96

    CAS  PubMed  Google Scholar 

  • Snapp-Childs W, Corbetta D (2005) Learning to walk: individual differences and early strategies. J Sport Exer Psych 27(Suppl S): S143–S144

    Google Scholar 

  • Takeda N, Tanaka-Tsuji M, Sawada T, Koizuka I, Kubo T (1995) Clinical investigation of the vestibular cortex. Acta Otolaryngol Suppl 520: 110–112

    PubMed  Google Scholar 

  • Telford L, Seidman SH, Paige GD (1997) Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance. J Neurophysiol 78: 1775–1790

    CAS  PubMed  Google Scholar 

  • Vingerhoets RA, Medendorp WP, Van Gisbergen JA (2006) Time course and magnitude of illusory translation perception during off-vertical axis rotation. J Neurophysiol 95: 1571–1587

    CAS  PubMed  Google Scholar 

  • Wertheim AH, Mesland BS, Bles W (2001) Cognitive suppression of tilt sensations during linear horizontal self-motion in the dark. Perception 30: 733–741

    CAS  PubMed  Google Scholar 

  • Wood SJ, Reschke MF, Sarmiento LA, Clement G (2007) Tilt and translation motion perception during off-vertical axis rotation. Exp Brain Res 182: 365–377

    PubMed  Google Scholar 

  • Wright WG, DiZio P, Lackner JR (2005) Vertical linear self-motion perception during visual and inertial motion: more than weighted summation of sensory inputs. J Vestib Res 15: 185–195

    CAS  PubMed  Google Scholar 

  • Yong NA, Paige GD, Seidman SH (2007) Multiple sensory cues underlying the perception of translation and path. J Neurophysiol 97: 1100–1113

    Google Scholar 

  • Young LR (1984) Perception of the body in space: mechanisms. In: Darian-Smith I (eds) The nervous system, vol III. American Physiological Society, Bethesda, pp 1023–1066

    Google Scholar 

  • Zupan LH, Merfeld DM (2005) Human ocular torsion and perceived roll responses to linear acceleration. J Vestib Res 15: 173–183

    PubMed  Google Scholar 

  • Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86: 209–230

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan E. Holly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holly, J.E., Wood, S.J. & McCollum, G. Phase-linking and the perceived motion during off-vertical axis rotation. Biol Cybern 102, 9–29 (2010). https://doi.org/10.1007/s00422-009-0347-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0347-0

Keywords

Navigation