Skip to main content

Advertisement

Log in

The effect of eccentric exercise with blood flow restriction on neuromuscular activation, microvascular oxygenation, and the repeated bout effect

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To examine the effect of low-intensity eccentric contractions with and without blood flow restriction (BFR) on microvascular oxygenation, neuromuscular activation, and the repeated bout effect (RBE).

Methods

Participants were randomly assigned to either low-intensity (LI), low-intensity with BFR (LI-BFR), or a control (CON) group. Participants in LI and LI-BFR performed a preconditioning bout of low-intensity eccentric exercise prior to about of maximal eccentric exercise. Participants reported 24, 48, 72, and 96 h later to assess muscle damage and function. Surface electromyography (sEMG) and near-infrared spectroscopy (NIRS) were used to measure neuromuscular activation and microvascular deoxygenation (deoxy-[Hb + Mb]) and [total hemoglobin] ([THC]) during the preconditioning bout, respectively.

Results

During set-2, LI-BFR resulted in greater activation of the VM-RMS (47.7 ± 11.5% MVIC) compared to LI (67.0 ± 20.0% MVIC), as well as during set-3 (p < 0.05). LI-BFR resulted in a greater change in deoxy-[Hb + Mb] compared to LI during set-2 (LI-BFR 13.1 ± 5.2 µM, LI 6.7 ± 7.9 µM), set-3 (LI-BFR 14.6 ± 6 µM, LI 6.9 ± 7.4 µM), and set-4 (p < 0.05). [THC] was higher during LI-BFR compared to LI (p < 0.05). All groups showed a decrease in MVIC torque immediately after maximal exercise (LI 74.2 ± 14.1%, LI-BFR 75 ± 5.1%, CON 53 ± 18.6%). At 24, 48, 72, and 96 h post maximal eccentric exercise, LI and LI-BFR force deficit was not different from baseline.

Conclusion

This study suggests that the neuromuscular and deoxygenation (i.e., metabolic stress) responses were considerably different between LI and LI-BFR groups; however, these differences did not lead to improvements in the RBE inferred by performing LI and LI-BFR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BFR:

Blood flow restriction

CON:

Control

deoxy-[Hb + Mb]:

Deoxyhemoglobin

EIMG:

Exercise-induced muscle damage

LI:

Low intensity

LI-BFR:

Low intensity with blood flow restriction

MVIC:

Maximal voluntary isometric contraction

NIRS:

Near-infrared spectroscopy

RBE:

Repeated bout effect

RM:

Repetition maximum

RMS:

Root mean square

SD:

Standard deviation

sEMG:

Surface electromyography

[THC]:

Total hemoglobin concentration

References

  • Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol 100(5):1460–1466. doi:10.1152/japplphysiol.01267.2005

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, Bemben MG (2012) Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review. Clin Physiol Funct Imaging 32(4):247–252. doi:10.1111/j.1475-097X.2012.01126.x

    Article  CAS  PubMed  Google Scholar 

  • Azuma K, Homma S, Kagaya A (2000) Oxygen supply-consumption balance in the thigh muscles during exhausting knee-extension exercise. J Biomed Opt 5(1):97–101. doi:10.1117/1.429974

    Article  CAS  PubMed  Google Scholar 

  • Bernardi M, Solomonow M, Baratta RV (1997) Motor unit recruitment strategy of antagonist muscle pair during linearly increasing contraction. Electromyogr Clin Neurophysiol 37(1):3–12

    CAS  PubMed  Google Scholar 

  • Bilodeau M, Cincera M, Gervais S, Arsenault AB, Gravel D, Lepage Y, McKinley P (1995) Changes in the electromyographic spectrum power distribution caused by a progressive increase in the force level. Eur J Appl Physiol Occup Physiol 71(2–3):113–123

    Article  CAS  PubMed  Google Scholar 

  • Cayot TE, Lauver JD, Silette CR, Scheuermann BW (2016) Effects of blood flow restriction duration on muscle activation and microvascular oxygenation during low-volume isometric exercise. Clin Physiol Funct Imaging 36(4):298–305. doi:10.1111/cpf.12228

    Article  CAS  PubMed  Google Scholar 

  • Chen TC, Chen HL, Lin MJ, Wu CJ, Nosaka K (2010) Potent protective effect conferred by four bouts of low-intensity eccentric exercise. Med Sci Sport Exerc 42(5):1004–1012. doi:10.1249/Mss.0b013e3181c0a818

    Article  Google Scholar 

  • Chen HL, Nosaka K, Chen TC (2012a) Muscle damage protection by low-intensity eccentric contractions remains for 2 weeks but not 3 weeks. Eur J Appl Physiol 112(2):555–565. doi:10.1007/s00421-011-1999-8

    Article  PubMed  Google Scholar 

  • Chen HL, Nosaka K, Pearce AJ, Chen TC (2012b) Two maximal isometric contractions attenuate the magnitude of eccentric exercise-induced muscle damage. Appl Physiol Nutr Metab 37(4):680–689. doi:10.1139/h2012-035

    Article  CAS  PubMed  Google Scholar 

  • Chen TC, Chen HL, Pearce AJ, Nosaka K (2012c) Attenuation of eccentric exercise-induced muscle damage by preconditioning exercises. Med Sci Sports Exerc 44(11):2090–2098. doi:10.1249/MSS.0b013e31825f69f3

    Article  PubMed  Google Scholar 

  • Chen TC, Tseng WC, Huang GL, Chen HL, Tseng KW, Nosaka K (2013) Low-intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly. Eur J Appl Physiol 113(4):1005–1015. doi:10.1007/s00421-012-2517-3

    Article  PubMed  Google Scholar 

  • Clark BC, Manini TM, Hoffman RL, Williams PS, Guiler MK, Knutson MJ, McGlynn ML, Kushnick MR (2011) Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports 21(5):653–662. doi:10.1111/j.1600-0838.2010.01100.x

    Article  CAS  PubMed  Google Scholar 

  • Clarkson PM, Nosaka K, Braun B (1992) Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc 24(5):512–520

    CAS  PubMed  Google Scholar 

  • Conchola EC, Thompson BJ, Smith DB (2013) Effects of neuromuscular fatigue on the electromechanical delay of the leg extensors and flexors in young and old men. Eur J Appl Physiol 113(9):2391–2399. doi:10.1007/s00421-013-2675-y

    Article  CAS  PubMed  Google Scholar 

  • Cook CJ, Kilduff LP, Beaven CM (2014) Improving strength and power in trained athletes with 3 weeks of occlusion training. Int J Sports Physiol Perform 9(1):166–172. doi:10.1123/ijspp.2013-0018

    Article  PubMed  Google Scholar 

  • Cram JR, Kasman GS, Holtz J (1998) Introduction to surface electromyography. Aspen, Gaithersburg

    Google Scholar 

  • Crenshaw AG, Karlsson S, Styf J, Backlund T, Friden J (1995) Knee extension torque and intramuscular pressure of the vastus lateralis muscle during eccentric and concentric activities. Eur J Appl Physiol Occup Physiol 70(1):13–19

    Article  CAS  PubMed  Google Scholar 

  • Cumming KT, Paulsen G, Wernbom M, Ugelstad I, Raastad T (2014) Acute response and subcellular movement of HSP27, alphaB-crystallin and HSP70 in human skeletal muscle after blood-flow-restricted low-load resistance exercise. Acta Physiologica 211(4):634–646. doi:10.1111/apha.12305

    Article  CAS  PubMed  Google Scholar 

  • Dalton PA, Stokes MJ (1991) Acoustic myography reflects force changes during dynamic concentric and eccentric contractions of the human biceps brachii muscle. Eur J Appl Physiol Occup Physiol 63(6):412–416

    Article  CAS  PubMed  Google Scholar 

  • DeLorey DS, Kowalchuk JM, Paterson DH (2003) Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 95(1):113–120. doi:10.1152/japplphysiol.00956.2002

    Article  PubMed  Google Scholar 

  • Ebbeling CB, Clarkson PM (1989) Exercise-induced muscle damage and adaptation. Sports Med 7(4):207–234

    Article  CAS  PubMed  Google Scholar 

  • Ferrari M, Binzoni T, Quaresima V (1997) Oxidative metabolism in muscle. Philos Trans R Soc Lond Ser B Biol Sci 352(1354):677–683. doi:10.1098/rstb.1997.0049

    Article  CAS  Google Scholar 

  • Ferrari M, Mottola L, Quaresima V (2004) Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol Revue canadienne de physiologie appliquee 29(4):463–487

    PubMed  Google Scholar 

  • Friden J, Sjostrom M, Ekblom B (1983) Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 4(3):170–176

    Article  CAS  PubMed  Google Scholar 

  • Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, Cerretelli P (2003) Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol 95(1):149–158. doi:10.1152/japplphysiol.00695.2002

    Article  PubMed  Google Scholar 

  • Hoffman JR, Im J, Rundell KW, Kang J, Nioka S, Spiering BA, Kime R, Chance B (2003) Effect of muscle oxygenation during resistance exercise on anabolic hormone response. Med Sci Sports Exerc 35(11):1929–1934. doi:10.1249/01.MSS.0000093613.30362.DF

    Article  CAS  PubMed  Google Scholar 

  • Iida H, Kurano M, Takano H, Kubota N, Morita T, Meguro K, Sato Y, Abe T, Yamazaki Y, Uno K, Takenaka K, Hirose K, Nakajima T (2007) Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur J Appl Physiol 100(3):275–285. doi:10.1007/s00421-007-0430-y

    Article  PubMed  Google Scholar 

  • Jakeman JR, Eston RG (2013) Joint angle-torque characteristics of the knee extensors following eccentric exercise-induced muscle damage in young, active women. J Exerc Sci Fit 11(1):50–56. doi:10.1016/j.jesf.2013.05.001

    Article  Google Scholar 

  • Karabulut M, Abe T, Sato Y, Bemben MG (2010) The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol 108(1):147–155. doi:10.1007/s00421-009-1204-5

    Article  PubMed  Google Scholar 

  • Koh TJ, Escobedo J (2004) Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contractions. Am J Physiol Cell Physiol 286(3):C713–C722. doi:10.1152/ajpcell.00341.2003

    Article  CAS  PubMed  Google Scholar 

  • Komi PV, Buskirk ER (1972) Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics 15(4):417–434. doi:10.1080/00140137208924444

    Article  CAS  PubMed  Google Scholar 

  • Kubo K, Tsunoda N, Kanehisa H, Fukunaga T (2004) Activation of agonist and antagonist muscles at different joint angles during maximal isometric efforts. Eur J Appl Physiol 91(2–3):349–352. doi:10.1007/s00421-003-1025-x

    Article  PubMed  Google Scholar 

  • Kubo K, Komuro T, Ishiguro N, Tsunoda N, Sato Y, Ishii N, Kanehisa H, Fukunaga T (2006) Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech 22(2):112–119

    Article  PubMed  Google Scholar 

  • Lavender AP, Nosaka K (2008) A light load eccentric exercise confers protection against a subsequent bout of more demanding eccentric exercise. J Sci Med Sport 11(3):291–298. doi:10.1016/j.jsams.2007.03.005

    Article  PubMed  Google Scholar 

  • Lieber RL, Friden J (1993) Muscle damage is not a function of muscle force but active muscle strain. J Appl Physiol (1985) 74(2):520–526

    CAS  Google Scholar 

  • Locke M, Noble EG (1995) Stress proteins: the exercise response. Can J Appl Physiol Revue canadienne de physiologie appliquee 20(2):155–167

    CAS  PubMed  Google Scholar 

  • Loenneke J, Fahs C, Rossow L, Sherk V, Thiebaud R, Abe T, Bemben D, Bemben M (2012a) Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol 112:2903–2912

    Article  PubMed  Google Scholar 

  • Loenneke JP, Fahs CA, Rossow LM, Abe T, Bemben MG (2012b) The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses 78(1):151–154. doi:10.1016/j.mehy.2011.10.014

    Article  CAS  PubMed  Google Scholar 

  • Lowery RP, Joy JM, Loenneke JP, de Souza EO, Machado M, Dudeck JE, Wilson JM (2014) Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin Physiol Funct Imaging 34(4):317–321. doi:10.1111/cpf.12099

    Article  PubMed  Google Scholar 

  • Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N (2008) Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc 40(2):258–263. doi:10.1249/mss.0b013e31815c6d7e

    Article  PubMed  Google Scholar 

  • Manimmanakorn A, Manimmanakorn N, Taylor R, Draper N, Billaut F, Shearman JP, Hamlin MJ (2013) Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. Eur J Appl Physiol 113(7):1767–1774. doi:10.1007/s00421-013-2605-z

    Article  PubMed  Google Scholar 

  • McArdle A, Pattwell D, Vasilaki A, Griffiths RD, Jackson MJ (2001) Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol 280(3):C621–C627

    CAS  PubMed  Google Scholar 

  • McHugh MP (2003) Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports 13(2):88–97

    Article  PubMed  Google Scholar 

  • McHugh MP, Tyler TF, Greenberg SC, Gleim GW (2002) Differences in activation patterns between eccentric and concentric quadriceps contractions. J Sports Sci 20(2):83–91. doi:10.1080/026404102317200792

    Article  PubMed  Google Scholar 

  • Miura H, McCully K, Hong L, Nioka S, Chance B (2001) Regional difference of muscle oxygen saturation and blood volume during exercise determined by near infrared imaging device. Jpn J Physiol 51(5):599–606

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto N, Wakahara T, Ema R, Kawakami Y (2013) Non-uniform muscle oxygenation despite uniform neuromuscular activity within the vastus lateralis during fatiguing heavy resistance exercise. Clin Physiol Funct Imaging 33(6):463–469. doi:10.1111/cpf.12054

    PubMed  Google Scholar 

  • Moritani T, Muramatsu S, Muro M (1987) Activity of motor units during concentric and eccentric contractions. Am J Phys Med 66(6):338–350

    CAS  PubMed  Google Scholar 

  • Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M (1992) Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol 64(6):552–556

    Article  CAS  PubMed  Google Scholar 

  • Noble EG, Milne KJ, Melling CW (2008) Heat shock proteins and exercise: a primer. Appl Physiol Nutr Metab 33(5):1050–1065. doi:10.1139/H08-069

    Article  CAS  PubMed  Google Scholar 

  • Nosaka K, Clarkson PM (1995) Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc 27(9):1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim J, Choi H, Kim H, Beekley M, Nho H (2010) Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. Eur J Appl Physiol 109:591–600

    Article  PubMed  Google Scholar 

  • Paulsen G, Lauritzen F, Bayer ML, Kalhovde JM, Ugelstad I, Owe SG, Hallen J, Bergersen LH, Raastad T (2009) Subcellular movement and expression of HSP27, alphaB-crystallin, and HSP70 after two bouts of eccentric exercise in humans. J Appl Physiol 107(2):570–582. doi:10.1152/japplphysiol.00209.2009

    Article  CAS  PubMed  Google Scholar 

  • Roig M, O’Brien K, Kirk G, Murray R, McKinnon P, Shadgan B, Reid WD (2009) The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med 43(8):556–568

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld BJ (2012) Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? J Strength Cond Res Natl Strength Cond Assoc 26(5):1441–1453. doi:10.1519/JSC.0b013e31824f207e

    Article  Google Scholar 

  • Scott BR, Loenneke JP, Slattery KM, Dascombe BJ (2015) Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med 45(3):313–325. doi:10.1007/s40279-014-0288-1

    Article  PubMed  Google Scholar 

  • Sieljacks P, Matzon A, Wernbom M, Ringgaard S, Vissing K, Overgaard K (2016) Muscle damage and repeated bout effect following blood flow restricted exercise. Eur J Appl Physiol 116(3):513–525. doi:10.1007/s00421-015-3304-8

    Article  CAS  PubMed  Google Scholar 

  • Starbuck C, Eston RG (2012) Exercise-induced muscle damage and the repeated bout effect: evidence for cross transfer. Eur J Appl Physiol 112(3):1005–1013. doi:10.1007/s00421-011-2053-6

    Article  PubMed  Google Scholar 

  • Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Omokawa M, Kinugawa S, Tsutsui H (2010) Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol 108:1563–1567

    Article  PubMed  Google Scholar 

  • Suga T, Okita K, Takada S, Omokawa M, Kadoguchi T, Yokota T, Hirabayashi K, Takahashi M, Morita N, Horiuchi M, Kinugawa S, Tsutsui H (2012) Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Eur J Appl Physiol 112(11):3915–3920. doi:10.1007/s00421-012-2377-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano H, Morita T, Iida H, Asada K, Kato M, Uno K, Hirose K, Matsumoto A, Takenaka K, Hirata Y, Eto F, Nagai R, Sato Y, Nakajima T (2005a) Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 95(1):65–73. doi:10.1007/s00421-005-1389-1

    Article  CAS  PubMed  Google Scholar 

  • Takano H, Morita T, Iida H, Asada K, Kato M, Uno K, Hirose K, Matsumoto A, Takenaka K, Hirata Y, Eto F, Nagai R, Sato Y, Nakajima T (2005b) Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 95:65–73

    Article  CAS  PubMed  Google Scholar 

  • Takano H, Morita T, Iida H, Kato M, Uno K, Hirose K, Matsumoto A, Takenaka K, Hirata Y, Furuichi T, Eto F, Nagai R, Sato Y, Nakajima T (2005c) Effects of low-intensity “KAATSU” resistance exercise on hemodynamic and growth hormone responses. Int J Kaatsu Train Res 1:13–18

    Article  Google Scholar 

  • Takarada Y, Sato Y, Ishii N (2002) Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol 86(4):308–314

    Article  PubMed  Google Scholar 

  • Takarada Y, Tsuruta T, Ishii N (2004) Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol 54(6):585–592. doi:10.2170/jjphysiol.54.585

    Article  PubMed  Google Scholar 

  • Thiebaud RS, Yasuda T, Loenneke JP, Abe T (2013) Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage. Interv Med Appl Sci 5(2):53–59. doi:10.1556/IMAS.5.2013.2.1

    PubMed  PubMed Central  Google Scholar 

  • Thiebaud RS, Loenneke JP, Fahs CA, Kim D, Ye X, Abe T, Nosaka K, Bemben MG (2014) Muscle damage after low-intensity eccentric contractions with blood flow restriction. Acta Physiol Hung 101(2):150–157. doi:10.1556/APhysiol.101.2014.2.3

    Article  CAS  PubMed  Google Scholar 

  • Thompson WR, Gordon NF, Pescatello LS (2010) ACSM’s guidelines for exercise testing and prescription. 8th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Wernbom M, Paulsen G, Nilsen TS, Hisdal J, Raastad T (2012) Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction. Eur J Appl Physiol 112(6):2051–2063. doi:10.1007/s00421-011-2172-0

    Article  PubMed  Google Scholar 

  • Westing SH, Seger JY (1989) Eccentric and concentric torque-velocity characteristics, torque output comparisons, and gravity effect torque corrections for the quadriceps and hamstring muscles in females. Int J Sports Med 10(3):175–180. doi:10.1055/s-2007-1024896

    Article  CAS  PubMed  Google Scholar 

  • Westing SH, Cresswell AG, Thorstensson A (1991) Muscle activation during maximal voluntary eccentric and concentric knee extension. Eur J Appl Physiol Occup Physiol 62(2):104–108

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Lowery RP, Joy JM, Loenneke JP, Naimo MA (2013) Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J Strength Cond Res Natl Strength Cond Assoc 27(11):3068–3075. doi:10.1519/JSC.0b013e31828a1ffa

    Article  Google Scholar 

  • Yasuda T, Abe T, Brechue WF, Iida H, Takano H, Meguro K, Kurano M, Fujita S, Nakajima T (2010) Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism 59(10):1510–1519. doi:10.1016/j.metabol.2010.01.016

    Article  CAS  PubMed  Google Scholar 

  • Yasuda T, Ogasawara R, Sakamaki M, Ozaki H, Sato Y, Abe T (2011) Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol 111:2525–2533

    Article  PubMed  Google Scholar 

  • Yasuda T, Loenneke JP, Thiebaud RS, Abe T (2012) Effects of blood flow restricted low-intensity concentric or eccentric training on muscle size and strength. Plos One 7(12):e52843. doi:10.1371/journal.pone.0052843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the subjects for volunteering to participate in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob D. Lauver.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauver, J.D., Cayot, T.E., Rotarius, T. et al. The effect of eccentric exercise with blood flow restriction on neuromuscular activation, microvascular oxygenation, and the repeated bout effect. Eur J Appl Physiol 117, 1005–1015 (2017). https://doi.org/10.1007/s00421-017-3589-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3589-x

Keywords

Navigation