Skip to main content
Log in

Changes in the electromechanical delay components during a fatiguing stimulation in human skeletal muscle: an EMG, MMG and force combined approach

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Peripheral fatigue involves electrochemical and mechanical mechanisms. An electromyographic, mechanomyographic and force combined approach may permit a kinetic evaluation of the changes at the synaptic, skeletal muscle fiber, and muscle–tendon unit level during a fatiguing stimulation.

Methods

Surface electromyogram, mechanomyogram, force and stimulation current were detected from the gastrocnemius medialis muscle in twenty male participants during a fatiguing stimulation (twelve blocks of 35 Hz stimulations, duty cycle 9 s on/1 s off, duration 120 s). The total electromechanical delay and its three components (between stimulation current and electromyogram, synaptic component; between electromyogram and mechanomyogram signal onset, muscle fiber electrochemical component, and between mechanomyogram and force signal onset, mechanical component) were calculated. Interday reliability and sensitivity were determined.

Results

After fatigue, peak force decreased by 48% (P < 0.05) and the total electromechanical delay and its synaptic, electrochemical and mechanical components lengthened from 25.8 ± 0.9, 1.47 ± 0.04, 11.2 ± 0.6, and 13.1 ± 1.3 ms to 29.0 ± 1.6, 1.56 ± 0.05, 12.4 ± 0.9, and 17.2 ± 0.6 ms, respectively (P < 0.05). During fatigue, the total electromechanical delay and the mechanical component increased significantly after the 40th second, and then remained stable. The synaptic and electrochemical components lengthened significantly after the 20th and 30th second, respectively. Interday reliability was high to very high, with an adequate level of sensitivity.

Conclusions

The kinetic evaluation of the delays during the fatiguing stimulation highlighted different onsets and kinetics, with the events at synaptic level being the first to reveal a significant elongation, followed by those at the intra-fiber level. The mechanical events, which were the most affected by fatigue, were the last to lengthen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

D:

Day

DelayTOT :

Total electromechanical delay

Δt :

Time delay

EMG:

Surface electromyography

F:

Force

GM:

Gastrocnemius medialis muscle

MF:

Mean frequency

MMG:

Mechanomyography

MTU:

Muscle–tendon unit

RMS:

Root mean square

SEC:

Series elastic components

Stim:

Stimulation current

References

  • Allen DG, Westerblad H, Lee JA, Lannergren J (1992) Role of excitation-contraction coupling in muscle fatigue. Sports Med 13(2):116–126

    Article  CAS  PubMed  Google Scholar 

  • Amann M, Venturelli M, Ives SJ, McDaniel J, Layec G, Rossman MJ (1985) Richardson RS (2013) Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol 115(3):355–364

    Article  Google Scholar 

  • Amann M, Sidhu SK, Weavil JC, Mangum TS, Venturelli M (2015) Autonomic responses to exercise: group III/IV muscle afferents and fatigue. Auton Neurosci 188:19–23

    Article  PubMed  Google Scholar 

  • Ament W, Verkerke GJ (2009) Exercise and fatigue. Sports Med 39(5):389–422

    Article  PubMed  Google Scholar 

  • Barry DT (1992) Vibrations and sounds from evoked muscle twitches. Electromyogr Clin Neurophysiol 32(1–2):35–40

    CAS  PubMed  Google Scholar 

  • Beck TW, Housh TJ, Cramer JT, Weir JP, Johnson G, Coburn JW, Malek MH, Mielke M (2005) Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review. Biomed Eng Online 4:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7(9):691–699

    Article  CAS  PubMed  Google Scholar 

  • Botter A, Lanfranco F, Merletti R, Minetto MA (2009) Myoelectric fatigue profiles of three knee extensor muscles. Int J Sports Med 30(6):408–417

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh PR, Komi PV (1979) Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol Occup Physiol 42(3):159–163

    Article  CAS  PubMed  Google Scholar 

  • Cè E, Rampichini S, Agnello L, Limonta E, Veicsteinas A, Esposito F (2013) Effects of temperature and fatigue on the electromechanical delay components. Muscle Nerve 47(4):566–576

    Article  PubMed  Google Scholar 

  • Cè E, Rampichini S, Limonta E, Esposito F (2014a) Fatigue effects on the electromechanical delay components during the relaxation phase after isometric contraction. Acta Physiol 11(1):82–96

    Article  Google Scholar 

  • Cè E, Rampichini S, Venturelli M, Limonta E, Veicsteinas A, Esposito F (2014b) Electromechanical delay components during relaxation after voluntary contraction: reliability and effects of fatigue. Muscle Nerve 51(6):907–915

    Article  Google Scholar 

  • Cè E, Rampichini S, Esposito F (2015) Novel insights into skeletal muscle function by mechanomyography: from the laboratory to the field. Sport Sci Health 11:1–28

    Article  Google Scholar 

  • Clausen TO, Overgaard K, Nielsen OB (2004) Evidence that the Na+–K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles. Acta Physiol Scand 180(2):209–216

    Article  CAS  PubMed  Google Scholar 

  • de Ruiter CJ, Jones DA, Sargeant AJ, de Haan A (1999) Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle. Exp Physiol 84(6):1137–1150

    Article  PubMed  Google Scholar 

  • Debold EP (2012) Recent insights into the molecular basis of muscular fatigue. Med Sci Sports Exerc 44(8):1440–1452

    Article  PubMed  Google Scholar 

  • Donoghue D, Stokes EK (2009) How much change is true change? The minimum detectable change of the Berg Balance Scale in elderly people. J Rehab Med 41(5):343–346

    Article  Google Scholar 

  • Edwards JN, Cully TR, Shannon TR, Stephenson DG, Launikonis BS (2012) Longitudinal and transversal propagation of excitation along the tubular system of rat fast-twitch muscle fibers studied by high speed confocal microscopy. J Physiol 590(Pt 3):475–492

    Article  CAS  PubMed  Google Scholar 

  • Esposito F, Orizio C, Veicsteinas A (1998) Electromyogram and mechanomyogram changes in fresh and fatigued muscle during sustained contraction in men. Eur J Appl Physiol Occup Physiol 78(6):494–501

    Article  CAS  PubMed  Google Scholar 

  • Esposito F, Ce E, Gobbo M, Veicsteinas A, Orizio C (2005) Surface EMG and mechanomyogram disclose isokinetic training effects on quadriceps muscle in elderly people. Eur J Appl Physiol 94(5–6):549–557

    Article  PubMed  Google Scholar 

  • Esposito F, Ce E, Rampichini S, Veicsteinas A (2009) Acute passive stretching in a previously fatigued muscle: electrical and mechanical response during tetanic stimulation. J Sports Sci 27(12):1347–1357

    Article  PubMed  Google Scholar 

  • Esposito F, Limonta E, Ce E (2011) Passive stretching effects on electromechanical delay and time course of recovery in human skeletal muscle: new insights from an electromyographic and mechanomyographic combined approach. Eur J Appl Physiol 111(3):485–495

    Article  PubMed  Google Scholar 

  • Esposito F, Cè E, Rampichini S, Limonta E, Venturelli M, Monti E, Bet L, Fossati B, Meola G (2016) Electromechanical delay components during skeletal muscle contraction and relaxation in patients with myotonic dystrophy type 1. Neuromuscul Disord 26(1):60–72

    Article  PubMed  Google Scholar 

  • Fitts RH (2008) The cross-bridge cycle and skeletal muscle fatigue. J Appl Physiol 104(2):551–558

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    CAS  PubMed  Google Scholar 

  • Gobbo M, Gaffurini P, Bissolotti L, Esposito F, Orizio C (2011) Transcutaneous neuromuscular electrical stimulation: influence of electrode positioning and stimulus amplitude settings on muscle response. Eur J Appl Physiol 111(10):2451–2459

    Article  CAS  PubMed  Google Scholar 

  • Hermens H, Freiks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hagg G (1999) Eurpoean recommendations for surface electromyography. RRD, The Netherlands

    Google Scholar 

  • Hug F, Gallot T, Catheline S, Nordez A (2011) Electromechanical delay in biceps brachii assessed by ultrafast ultrasonography. Muscle Nerve 43(3):441–443

    Article  PubMed  Google Scholar 

  • Jaskolski A, Andrzejewska R, Marusiak J, Kisiel-Sajewicz K, Jaskolska A (2007) Similar response of agonist and antagonist muscles after eccentric exercise revealed by electromyography and mechanomyography. J Electromyogr Kinesiol 17(5):568–577

    Article  PubMed  Google Scholar 

  • Juel C (1988) Muscle action-potential propagation velocity changes during activity. Muscle Nerve 11(7):714–719

    Article  CAS  PubMed  Google Scholar 

  • Lacourpaille L, Hug F, Nordez A (2013a) Influence of passive muscle tension on electromechanical delay in humans. PLoS One 8(1):e53159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacourpaille L, Nordez A, Hug F (2013b) Influence of stimulus intensity on electromechanical delay and its mechanisms. J Electromyogr Kinesiol 23(1):51–55

    Article  PubMed  Google Scholar 

  • Lacourpaille L, Hug F, Guevel A, Pereon Y, Magot A, Hogrel JY, Nordez A (2014) New insights on contraction efficiency in patients with Duchenne muscular dystrophy. J Appl Physiol 117(6):658–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamb GD (2002) Excitation-contraction coupling and fatigue mechanisms in skeletal muscle: studies with mechanically skinned fibers. J Muscle Res Cell Motil 23(1):81–91

    Article  CAS  PubMed  Google Scholar 

  • Merton PA, Pampiglione G (1950) Strength and fatigue. Nature 166(4221):527

    Article  CAS  PubMed  Google Scholar 

  • Muraoka T, Muramatsu T, Fukunaga T, Kanehisa H (2004) Influence of tendon slack on electromechanical delay in the human medial gastrocnemius in vivo. J Appl Physiol 96(2):540–544

    Article  PubMed  Google Scholar 

  • Nordez A, Cathelin S, Hug F (2009a) A novel method for measuring electromechanical delay on the vastus medialis obliquus and vastus lateralis. Ultrasound Med Biol 35(5):878

    Article  PubMed  Google Scholar 

  • Nordez A, Gallot T, Catheline S, Guevel A, Cornu C, Hug F (2009b) Electromechanical delay revisited using very high frame rate ultrasound. J Appl Physiol 106(6):1970–1975

    Article  PubMed  Google Scholar 

  • O’Keeffe DT, Lyons GM, Donnelly AE, Byrne CA (2001) Stimulus artifact removal using a software-based two-stage peak detection algorithm. J Neurosci Methods 109:137–145

    Article  PubMed  Google Scholar 

  • Orizio C, Gobbo M, Diemont B, Esposito F, Veicsteinas A (2003) The surface mechanomyogram as a tool to describe the influence of fatigue on biceps brachii motor unit activation strategy. Historical basis and novel evidence. Eur J Appl Physiol 90(3–4):326–336

    Article  PubMed  Google Scholar 

  • Rampichini S, Cè E, Limonta E, Esposito F (2014) Effects of fatigue on the electromechanical delay components in gastrocnemius medialis muscle. Eur J Appl Physiol 114(3):639–651

    Article  PubMed  Google Scholar 

  • Sasaki K, Sasaki T, Ishii N (2011) Acceleration and force reveal different mechanisms of electromechanical delay. Med Sci Sports Exerc 43(7):1200–1206

    Article  PubMed  Google Scholar 

  • Selvin D, Renaud JM (2015) Changes in myoplasmic Ca2+ during fatigue differ between FDB fibers, between glibenclamide-exposed and Kir6.2−/− fibers and are further modulated by verapamil. Physiol Rep 3(3):e12303

  • Sidhu SK, Weavil JC, Venturelli M, Garten RS, Rossman MJ, Richardson RS, Gmelch BS, Morgan DE, Amann M (2014) Spinal mu-opioid receptor-sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle. J Physiol 592(22):5011–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieck GC, Prakash YS (1995) Fatigue at the neuromuscular junction. Branch point vs. presynaptic vs. postsynaptic mechanisms. Adv Exp Med Biol 384:83–100

    Article  CAS  PubMed  Google Scholar 

  • Taylor DC, Brooks DE, Ryan JB (1997) Viscoelastic characteristics of muscle: passive stretching versus muscular contractions. Med Sci Sports Exerc 29(12):1619–1624

    Article  CAS  PubMed  Google Scholar 

  • Yavuz SU, Sendemir-Urkmez A, Turker KS (2010) Effect of gender, age, fatigue and contraction level on electromechanical delay. Clin Neurophysiol 121(10):1700–1706

    Article  PubMed  Google Scholar 

  • Zhang LQ, Rymer WZ (2001) Reflex and intrinsic changes induced by fatigue of human elbow extensor muscles. J Neurophysiol 86(3):1086–1094

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the participants involved in the study, for their patience and committed involvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Cè.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Communicated by Nicolas Place.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cè, E., Rampichini, S., Monti, E. et al. Changes in the electromechanical delay components during a fatiguing stimulation in human skeletal muscle: an EMG, MMG and force combined approach. Eur J Appl Physiol 117, 95–107 (2017). https://doi.org/10.1007/s00421-016-3502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3502-z

Keywords

Navigation