Skip to main content
Log in

Home-based isometric exercise training induced reductions resting blood pressure

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Isometric exercise training (IET) reduces resting blood pressure (BP). Most previous protocols impose exercise barriers which undermine its effectiveness as a potential physical therapy for altering BP. An inexpensive, home-based programme would promote IET as a valuable tool in the fight against hypertension. The aims of this study were: (a) to investigate whether home-based wall squat training could successfully reduce resting BP and (b) to explore the physiological variables that might mediate a change in resting BP.

Methods

Twenty-eight healthy normotensive males were randomly assigned to a control and a 4 week home-based IET intervention using a crossover design with a 4 week ‘washout’ period in-between. Wall squat training was completed 3 × weekly over 4 weeks with 48 h between sessions. Each session comprised 4 × 2 min bouts of wall squat exercise performed at a participant-specific knee joint angle relative to a target HR of 95% HRpeak, with 2 min rest between bouts. Resting heart rate, BP, cardiac output, total peripheral resistance, and stroke volume were taken at baseline and post each condition.

Results

Resting BP (systolic −4 ± 5, diastolic −3 ± 3 and mean arterial −3 ± 3 mmHg), cardiac output (−0.54 ± 0.66 L min−1) and heart rate (−5 ± 7 beats min−1) were all reduced following IET, with no change in total peripheral resistance or stroke volume compared to the control.

Conclusion

These findings suggest that the wall squat provides an effective method for reducing resting BP in the home resulting primarily from a reduction in resting heart rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANCOVA:

Analysis of covariance

BP:

Blood pressure

DBP:

Diastolic blood pressure

EMG:

Electromyography

HR:

Heart rate

HRpeak :

Peak heart rate

IET:

Isometric exercise training

MAP:

Mean arterial blood pressure

MCID:

Minimal clinically important difference

MVC:

Maximal voluntary contraction

\({\dot{Q}}\) :

Cardiac output

SBP:

Systolic blood pressure

SV:

Stroke volume

THRR:

Target heart rate range

TPR:

Total peripheral resistance

References

  • Abe N, Bisognano J (2011) Non-pharmacological interventions for patients with resistant hypertension. US Cardiol 8:52–55

    Google Scholar 

  • Badrov MB, Bartol CL, DiBartolomeo MA, Millar PJ, McNevin NH, McGowan CL (2013) Effects of isometric handgrip training dose on resting blood pressure and resistance vessel endothelial function in normotensive women. Eur J Appl Physiol 113:2091–2100

    Article  PubMed  Google Scholar 

  • Badrov MB, Freeman SR, Zokvic MA, Millar PJ, McGowan CL (2016) Isometric exercise training lowers resting blood pressure and improves local brachial artery flow-mediated dilatation equally in men and women. Eur J Appl Physiol. doi:10.1007/s00421-016-3366-2

    PubMed  Google Scholar 

  • Baross AW, Wiles JD, Swaine IL (2012) Effects of the intensity of leg isometric training on the vasculature of trained and untrained limbs and resting blood pressure in middle-aged men. Int J Vasc Med. doi:10.1155/2012/964697

    PubMed  PubMed Central  Google Scholar 

  • Boone T (2014) Introduction to exercise physiology. Jones & Bartlett Learning, Burlington

    Google Scholar 

  • Carlson DJ, Dieberg G, Hess NC, Millar PJ, Smart NA (2014) Isometric exercise training for blood pressure management: a systematic review and meta-analysis. Mayo Clin Proc 89:327–334

    Article  PubMed  Google Scholar 

  • Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jones DW, Materson BJ, Oparil S, Wright JT, Roccella EJ (2003) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. J Am Med Assoc 289:2560–2572

    Article  CAS  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences, 2nd edn. Lawrence Erlbaum Associate Publishers, London

    Google Scholar 

  • Contreras B (2014) Bodyweight strength training anatomy. Human Kinetics, Champaign

    Google Scholar 

  • Cook NR, Cohen J, Hebert PR, Taylor JO, Hennekens CH (1995) Implications of small reductions in diastolic blood pressure for primary prevention. Arch Intern Med 155:701–709

    Article  CAS  PubMed  Google Scholar 

  • Delavier F (2010) Strength training anatomy. Human Kinetics, Champaign

    Google Scholar 

  • Devereux GR, Wiles JD, Swaine IL (2010) Reductions in resting blood pressure after 4 weeks of isometric exercise training. Eur J Appl Physiol 109:601–606

    Article  PubMed  Google Scholar 

  • Fethney J (2010) Statistical and clinical significance, and how to use confidence intervals to help interpret both. Aust Crit Care 23:93–97

    Article  PubMed  Google Scholar 

  • Field A (2009) Discovering statistic using SPSS for Windows, 3rd edn. Sage, London

    Google Scholar 

  • Franke WD, Boettger CF, McLean SP (2000) Effects of varying central command and muscle mass on the cardiovascular responses to isometric exercise. Clin Physiol 20:380–387

    Article  CAS  PubMed  Google Scholar 

  • Gálvez JM, Alonso JP, Sangrador LA, Navarro G (2000) Effect of muscle mass and intensity of isometric contraction on heart rate. J Appl Physiol 88:487–492

    PubMed  Google Scholar 

  • Gill KF, Arthur ST, Swaine I, Devereux GD, Huet YM, Wikstrom E, Cordova ML, Howden R (2015) Intensity-dependent reductions in resting blood pressure following short-term isometric exercise training. J Sports Sci 33:616–621

    Article  PubMed  Google Scholar 

  • Goldring N, Wiles JD, Coleman D (2014) The effects of isometric wall squat exercise on heart rate and blood pressure in a normotensive population. J Sports Sci 32:129–136

    Article  PubMed  Google Scholar 

  • Green DJ, Maiorana A, O’Driscoll G, Taylor R (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561:1–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hietanen E (1984) Cardiovascular responses to static exercise. Scand J Work Environ Health 10:397–402

    Article  CAS  PubMed  Google Scholar 

  • Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports Med 30:1–15

    Article  CAS  PubMed  Google Scholar 

  • Hunter SK, Ryan DL, Ortega JD, Enoka RM (2002) Task differences with the same load torque alter the endurance time of submaximal fatiguing contractions in humans. J Neurophysiol 88:3087–3096

    Article  PubMed  Google Scholar 

  • Iellamo F, Massaro M, Raimondi G, Peruzzi G, Legramante JM (1999) Role of muscular factors in cardiorespiratory responses to static exercise: contribution of reflex mechanisms. J Appl Physiol 86:174–180

    CAS  PubMed  Google Scholar 

  • Jacobson NS, Truax P (1991) Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol 59:12–19

    Article  CAS  PubMed  Google Scholar 

  • Lind AR (2011) Cardiovascular adjustments to isometric contractions: static effort. In: Shepherd JT, Abboud FM (eds) Comprehensive physiology. The American Physiological Society, Bethesda, pp 947–966

    Google Scholar 

  • McGowan CL, Levy AS, McCartney N, Macdonald MJ (2007a) Isometric handgrip training does not improve flow-mediated dilation in subjects with normal blood pressure. Clin Sci 112:403–409

    Article  PubMed  Google Scholar 

  • McGowan CL, Visocchi A, Faulkner M, Verduyn R, Rakobowchuk M, Levy AS, McCartney N, Macdonald MJ (2007b) Isometric handgrip training improves local flow-mediated dilation in medicated hypertensives. Eur J Appl Physiol 99:227–234

    Article  PubMed  Google Scholar 

  • Millar PJ, Bray SR, McGowan CL, MacDonald MJ, McCartney N (2007) Effects of isometric handgrip training among people medicated for hypertension: a multilevel analysis. Blood Press Monit 12:307–314

    Article  PubMed  Google Scholar 

  • Millar PJ, Bray SR, Macdonald MJ, McCartney N (2008) The hypotensive effects of isometric handgrip training using an inexpensive spring handgrip training device. J Cardiopulm Rehabil Prev 28:203–207

    Article  PubMed  Google Scholar 

  • Millar PJ, Paashuis A, McCartney N (2009) Isometric handgrip effects on hypertension. Curr Hypertens Rev 5:54–60

    Article  Google Scholar 

  • Millar PJ, Levy AS, McGowan CL, McCartney N, Macdonald MJ (2013a) Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients. Scand J Med Sci Sports 23:620–626

    CAS  PubMed  Google Scholar 

  • Millar PJ, McGowan CL, Cornelissen VA, Araujo CG, Swaine IL (2013b) Evidence for the role of isometric exercise training in reducing blood pressure: potential mechanisms and future directions. Sports Med 44:345–356

    Article  Google Scholar 

  • Mitchell JH, Payne FC, Saltin B, Schibye B (1980) The role of muscle mass in the cardiovascular response to static contractions. J Physiol 309:45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page P (2014) Beyond statistical significance: clinical interpretation of rehabilitation research literature. Int J Sports Phys Ther 9:726–736

    PubMed  PubMed Central  Google Scholar 

  • Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA (2004) American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc 36:533–553

    Article  PubMed  Google Scholar 

  • Peters PG, Alessio HM, Hagerman AE, Ashton T, Nagy S, Wiley RL (2006) Short-term isometric exercise reduces systolic blood pressure in hypertensive adults: possible role of reactive oxygen species. Int J Cardiol 110:199–205

    Article  PubMed  Google Scholar 

  • Reese NB, Bandy WD (2010) Joint range of motion and muscle length testing, 2nd edn. Saunders Elsevier, St. Louis

    Google Scholar 

  • Seals DR (1989) Influence of muscle mass on sympathetic neural activation during isometric exercise. J Appl Physiol 67:1801–1806

    CAS  PubMed  Google Scholar 

  • Shibasaki M, Wilson TE, Bundgaard-Nielsen M, Seifert T, Secher NH, Crandall CG (2011) Modelflow underestimates cardiac output in heat-stressed individuals. Am J Physiol Regul Integr Comp Physiol 300:R486–R491

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Fernhall B (2011) Advanced cardiovascular exercise physiology. Human Kinetics, Champaign

    Google Scholar 

  • Stamler J (1997) The INTERSALT study: background, methods, findings, and implications. Am J Clin Nutr 65:626S–642S

    CAS  PubMed  Google Scholar 

  • Stiller-Moldovan C, Kenno K, McGowan CL (2012) Effects of isometric handgrip training on blood pressure (resting and 24 h ambulatory) and heart rate variability in medicated hypertensive patients. Blood Press Monit 17:55–61

    Article  PubMed  Google Scholar 

  • Taylor AC, McCartney N, Kamath MV, Wiley RL (2003) Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Exerc 35:251–256

    Article  PubMed  Google Scholar 

  • Tinken TM, Thijssen DHJ, Black MA, Cable NT, Green DJ (2008) Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol 586:5003–5012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinken TM, Thijssen DHJ, Hopkins N, Dawson EA, Cable NT, Green DJ (2010) Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension 55:312–318

    Article  CAS  PubMed  Google Scholar 

  • Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 74:2566–2573

    CAS  PubMed  Google Scholar 

  • Wiles JD, Coleman DA, Dunford M, Swaine IL (2005) A novel method for the performance of isometric exercise in the home. J Sports Sci 23:795–803

    Article  PubMed  Google Scholar 

  • Wiles JD, Allum SR, Coleman DA, Swaine IL (2008) The relationships between exercise intensity, heart rate, and blood pressure during an incremental isometric exercise test. J Sports Sci 26:155–162

    Article  PubMed  Google Scholar 

  • Wiles JD, Coleman DA, Swaine IL (2010) The effects of performing isometric training at two exercise intensities in healthy young males. Eur J Appl Physiol 108:419–428

    Article  PubMed  Google Scholar 

  • Wiley RL, Dunn CL, Cox RH, Hueppchen NA, Scott MS (1992) Isometric exercise training lowers resting blood pressure. Med Sci Sports Exerc 24:749–754

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Wiles.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiles, J.D., Goldring, N. & Coleman, D. Home-based isometric exercise training induced reductions resting blood pressure. Eur J Appl Physiol 117, 83–93 (2017). https://doi.org/10.1007/s00421-016-3501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3501-0

Keywords

Navigation