Skip to main content
Log in

Physiological responses to interval endurance exercise at different levels of blood flow restriction

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to identify a blood flow restriction (BFR) endurance exercise protocol that would both maximize cardiopulmonary and metabolic strain, and minimize the perception of effort.

Methods

Twelve healthy males (23 ± 2 years, 75 ± 7 kg) performed five different exercise protocols in randomized order: HI, high-intensity exercise starting at 105% of the incremental peak power (P peak); I-BFR30, intermittent BFR at 30% P peak; C-BFR30, continuous BFR at 30% P peak; CON30, control exercise without BFR at 30% P peak; I-BFR0, intermittent BFR during unloaded exercise. Cardiopulmonary, gastrocnemius oxygenation (StO2), capillary lactate ([La]), and perceived exertion (RPE) were measured.

Results

V̇O2, ventilation ( E), heart rate (HR), [La] and RPE were greater in HI than all other protocols. However, muscle StO2 was not different between HI (set1—57.8 ± 5.8; set2—58.1 ± 7.2%) and I-BRF30 (set1—59.4 ± 4.1; set2—60.5 ± 6.6%, p < 0.05). While physiologic responses were mostly similar between I-BFR30 and C-BFR30, [La] was greater in I-BFR30 (4.2 ± 1.1 vs. 2.6 ± 1.1 mmol L−1, p = 0.014) and RPE was less (5.6 ± 2.1 and 7.4 ± 2.6; p = 0.014). I-BFR30 showed similar reduced muscle StO2 compared with HI, and increased blood lactate compared to C-BFR30 exercise.

Conclusion

Therefore, this study demonstrate that endurance cycling with intermittent BFR promotes muscle deoxygenation and metabolic strain, which may translate into increased endurance training adaptations while minimizing power output and RPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BFR:

Blood flow restriction

HI:

High-intensity

P peak :

Peak power

I-BFR30:

Intermittent

C-BFR30:

Continuous Blood Flow Restriction at 30% of peak power

CON30:

Control exercise at 30% of peak power

I-BFR0:

Intermittent Blood Flow Restriction during unloaded exercise

StO2 :

Oxygenation

[La]:

Capillary lactate

RPE:

Perceived exertion

V̇O2 :

Oxygen uptake

E :

Ventilation uptake-

HR:

Heart rate

OBLA:

Onset blood lactate accumulation

W:

Watts

O2 :

Oxygen

CO2 :

Dioxide of carbon

O2Hb:

Oxyhemoglobin

HHb:

Deoxyhemoglobin

SD:

Standard deviation

ANOVA:

Analysis of variance

mmHg:

Millimeters of mercury

HIF-1a:

Hypoxia inducible factor-1a

VEGF:

Vascular endothelial growth factor

COPD:

Chronic obstructive pulmonary disease

CHF:

Congestive heart failure

References

  • Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol 100(5):1460–1466. doi:10.1152/japplphysiol.01267.2005

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Fujita S, Nakajima T, Sakamaki M, Ozaki H, Ogasawara R, Sugaya M, Kudo M, Kurano M, Yasuda T, Sato Y, Ohshima H, Mukai C, Ishii N (2010a) Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2MAX in young men. J Sports Sci Med 9(3):452–458

    PubMed  PubMed Central  Google Scholar 

  • Abe T, Sakamaki M, Fujita S, Ozaki H, Sugaya M, Sato Y, Nakajima T (2010b) Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. J Geriatr Phys Ther 33(1):34–40

    PubMed  Google Scholar 

  • Borg G (1998) Borg’s perceived exertion and pain scales. Human Kinetics, Champaign, IL, US

  • Brandner CR, Kidgell DJ, Warmington SA (2015) Unilateral bicep curl hemodynamics: low-pressure continuous vs. high-pressure intermittent blood flow restriction. Scand J Med Sci Sports 25(6):770–777. doi:10.1111/sms.12297

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (2016) Energy flux, lactate shuttling, mitochondrial dynamics, and hypoxia. Adv Exp Med Biol 903:439–455. doi:10.1007/978-1-4899-7678-9_29

    Article  PubMed  Google Scholar 

  • Campbell EJ, Lefrak SS (1978) How aging affects the structure and function of the respiratory system. Geriatrics 33(6):68–74

    CAS  PubMed  Google Scholar 

  • Casaburi R, ZuWallack R (2009) Pulmonary rehabilitation for management of chronic obstructive pulmonary disease. N Engl J Med 360:1329–1335

    Article  CAS  PubMed  Google Scholar 

  • Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295(1):R264–R272. doi:10.1152/ajpregu.00875.2007

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira MF, Caputo F, Corvino RB, Denadai BS (2015) Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand J Med Sci Sports. doi:10.1111/sms.12540

    Google Scholar 

  • Dolmage TE, Goldstein RS (2006) Response to one-legged cycling in patients with COPD. Chest 129(2):325–332

    Article  PubMed  Google Scholar 

  • Egginton S (2009) Invited review: activity-induced angiogenesis. Pflugers Arch 457(5):963–977. doi:10.1007/s00424-008-0563-9

    Article  CAS  PubMed  Google Scholar 

  • Emtner M, Porszasz J, Burns M, Somfay A, Casaburi R (2003) Benefits of supplemental oxygen in exercise training in nonhypoxemic chronic obstructive pulmonary disease patients. Am J Respir Crit Care Med 168(9):1034–1042

    Article  PubMed  Google Scholar 

  • Evans C, Vance S, Brown M (2010) Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles. J Sports Sci 28(9):999–1007. doi:10.1080/02640414.2010.485647

    Article  PubMed  Google Scholar 

  • Fitschen PJ, Kistler BM, Jeong JH, Chung HR, Wu PT, Walsh MJ, Wilund KR (2014) Perceptual effects and efficacy of intermittent or continuous blood flow restriction resistance training. Clin Physiol Funct Imaging 34(5):356–363. doi:10.1111/cpf.12100

    Article  CAS  PubMed  Google Scholar 

  • Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103(3):903–910. doi:10.1152/japplphysiol.00195.2007

    Article  CAS  PubMed  Google Scholar 

  • Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575(Pt 3):901–911. doi:10.1113/jphysiol.2006.112094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouzi F, Préfaut C, Abdellaoui A, Roudier E, de Rigal P, Molinari N, Laoudj-Chenivesse D, Mercier J, Birot O, Hayot M (2013) Blunted muscle angiogenic training-response in COPD patients versus sedentary controls. Eur Respir J 41(4):806–814. doi:10.1183/09031936.00053512

    Article  CAS  PubMed  Google Scholar 

  • Gualano B, Neves M, Lima FR, Pinto AL, Laurentino G, Borges C, Baptista L, Artioli GG, Aoki MS, Moriscot A, Lancha AH, Bonfá E, Ugrinowitsch C (2010) Resistance training with vascular occlusion in inclusion body myositis: a case study. Med Sci Sports Exerc 42(2):250–254. doi:10.1249/MSS.0b013e3181b18fb8

    Article  PubMed  Google Scholar 

  • Guenette JA, Witt JD, McKenzie DC, Road JD, Sheel AW (2007) Respiratory mechanics during exercise in endurance-trained men and women. J Physiol 581(Pt 3):1309–1322. doi:10.1113/jphysiol.2006.126466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes SG, McCord JL, Koba S, Kaufman MP (2009) Gadolinium inhibits group III but not group IV muscle afferent responses to dynamic exercise. J Physiol 587(Pt 4):873–882. doi:10.1113/jphysiol.2008.164640

    Article  CAS  PubMed  Google Scholar 

  • Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P, Weibel ER (1985) Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 59(2):320–327

    CAS  PubMed  Google Scholar 

  • Hudlicka O, Brown MD (2009) Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor. J Vasc Res 46(5):504–512. doi:10.1159/000226127

    Article  CAS  PubMed  Google Scholar 

  • Hunt JE, Galea D, Tufft G, Bunce D, Ferguson RA (2013) Time course of regional vascular adaptations to low load resistance training with blood flow restriction. J Appl Physiol 115(3):403–411. doi:10.1152/japplphysiol.00040.2013

    Article  PubMed  Google Scholar 

  • Iida H, Kurano M, Takano H, Kubota N, Morita T, Meguro K, Sato Y, Abe T, Yamazaki Y, Uno K, Takenaka K, Hirose K, Nakajima T (2007) Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur J Appl Physiol 100(3):275–285. doi:10.1007/s00421-007-0430-y

    Article  PubMed  Google Scholar 

  • Kacin A, Strazar K (2011) Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports 21(6):e231–e241. doi:10.1111/j.1600-0838.2010.01260.x

    Article  CAS  PubMed  Google Scholar 

  • Karabulut M, Leal JA, Garcia SD, Cavazos C, Bemben M (2014) Tissue oxygenation, strength and lactate response to different blood flow restrictive pressures. Clin Physiol Funct Imaging 34(4):263–269. doi:10.1111/cpf.12090

    Article  CAS  PubMed  Google Scholar 

  • Keramidas ME, Kounalakis SN, Geladas ND (2012) The effect of interval training combined with thigh cuffs pressure on maximal and submaximal exercise performance. Clin Physiol Funct Imaging 32(3):205–213. doi:10.1111/j.1475-097X.2011.01078.x

    Article  PubMed  Google Scholar 

  • Koga S, Rossiter HB, Heinonen I, Musch TI, Poole DC (2014) Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med Sci Sports Exerc 46(5):860–876. doi:10.1249/MSS.0000000000000178

    Article  CAS  PubMed  Google Scholar 

  • Larkin KA, Macneil RG, Dirain M, Sandesara B, Manini TM, Buford TW (2012) Blood flow restriction enhances post-resistance exercise angiogenic gene expression. Med Sci Sports Exerc 44(11):2077–2083. doi:10.1249/MSS.0b013e3182625928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M, Aihara AY, AaR Fernandes, Tricoli V (2012) Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc 44(3):406–412. doi:10.1249/MSS.0b013e318233b4bc

    Article  CAS  PubMed  Google Scholar 

  • Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, Mattocks KT, Abe T, Bemben MG (2013) Blood flow restriction pressure recommendations: a tale of two cuffs. Front. Physiol. 4:249. doi:10.3389/fphys.2013.00249

    PubMed  PubMed Central  Google Scholar 

  • Madarame H, Kurano M, Fukumura K, Fukuda T, Nakajima T (2013) Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: a pilot study. Clin Physiol Funct Imaging 33(1):11–17. doi:10.1111/j.1475-097X.2012.01158.x

    Article  CAS  PubMed  Google Scholar 

  • Mahler DA, Rosiello RA, Loke J (1986) The aging lung. Clin Geriatr Med 2(2):215–225

    CAS  PubMed  Google Scholar 

  • Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, Dekhuijzen PN, Franssen F, Gayan-Ramirez G, Gea J, Gosker HR, Gosselink R, Hayot M, Hussain SN, Janssens W, Polkey MI, Roca J, Saey D, Schols AM, Spruit MA, Steiner M, Taivassalo T, Troosters T, Vogiatzis I, Wagner PD, ATS, ERS Ad Hoc Committee on Limb Muscle Dysfunction in COPD (2014) An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 189(9):e15–e62. doi:10.1164/rccm.201402-0373ST

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattar MA, Gualano B, Perandini LA, Shinjo SK, Lima FR, Sá-Pinto AL, Roschel H (2014) Safety and possible effects of low-intensity resistance training associated with partial blood flow restriction in polymyositis and dermatomyositis. Arthritis Res Ther 16(5):473. doi:10.1186/s13075-014-0473-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M (1992) Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol 64(6):552–556

    Article  CAS  PubMed  Google Scholar 

  • Nikooie R, Samaneh S (2016) Exercise-induced lactate accumulation regulates intramuscular triglyceride metabolism via transforming growth factor-β1 mediated pathways. Mol Cell Endocrinol 5(419):244–251

    Article  Google Scholar 

  • O’Donnell DE, Laveneziana P (2007) Dyspnea and activity limitation in COPD: mechanical factors. COPD 4(3):225–236

    Article  PubMed  Google Scholar 

  • Okushima D, Poole DC, Rossiter HB, Barstow TJ, Kondo N, Ohmae E, Koga S (2015) Muscle deoxygenation in the quadriceps during ramp incremental cycling: deep vs. superficial heterogeneity. J Appl Physiol 119(11):1313–1319. doi:10.1152/japplphysiol.00574.2015

    CAS  PubMed  Google Scholar 

  • Ozaki H, Sakamaki M, Yasuda T, Fujita S, Ogasawara R, Sugaya M, Nakajima T, Abe T (2011) Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants. J Gerontol A Biol Sci Med Sci 66(3):257–263. doi:10.1093/gerona/glq182

    Article  PubMed  Google Scholar 

  • Ozaki H, Kakigi R, Kobayashi H, Loenneke JP, Abe T, Naito H (2014) Effects of walking combined with restricted leg blood flow on mTOR and MAPK signalling in young men. Acta Physiol (Oxf) 211(1):97–106. doi:10.1111/apha.12243

    Article  CAS  Google Scholar 

  • Park S, Kim JK, Choi HM, Kim HG, Beekley MD, Nho H (2010) Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. Eur J Appl Physiol 109(4):591–600. doi:10.1007/s00421-010-1377-y

    Article  PubMed  Google Scholar 

  • Patterson SD, Ferguson RA (2010) Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. Eur J Appl Physiol 108(5):1025–1033. doi:10.1007/s00421-009-1309-x

    Article  PubMed  Google Scholar 

  • Pearson SJ, Hussain SR (2015) A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med 45(2):187–200. doi:10.1007/s40279-014-0264-9

    Article  PubMed  Google Scholar 

  • Renzi CP, Tanaka H, Sugawara J (2010) Effects of leg blood flow restriction during walking on cardiovascular function. Med Sci Sports Exerc 42(4):726–732. doi:10.1249/MSS.0b013e3181bdb454

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumide T, Sakuraba K, Sawaki K, Ohmura H, Tamura Y (2009) Effect of resistance exercise training combined with relatively low vascular occlusion. J Sci Med Sport 12(1):107–112. doi:10.1016/j.jsams.2007.09.009

    Article  PubMed  Google Scholar 

  • Sundberg CJ (1994) Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol Scand Suppl 615:1–50

    CAS  PubMed  Google Scholar 

  • Takagi S, Kime R, Niwayama M, Murase N, Katsumura T (2013) Muscle oxygen saturation heterogeneity among leg muscles during ramp exercise. Adv Exp Med Biol 765:273–278. doi:10.1007/978-1-4614-4989-8_38

    Article  CAS  PubMed  Google Scholar 

  • Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N (2000) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88(6):2097–2106

    CAS  PubMed  Google Scholar 

  • Terrados N, Jansson E, Sylven C, Kaijser L (1990) Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J Appl Physiol 68:2369–2372

    CAS  PubMed  Google Scholar 

  • Vechin FC, Libardi CA, Conceição MS, Damas FR, Lixandrão ME, Berton RP, Tricoli VA, Roschel HA, Cavaglieri CR, Chacon-Mikahil MP, Ugrinowitsch C (2015) Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res 29(4):1071–1076. doi:10.1519/JSC.0000000000000703

    Article  PubMed  Google Scholar 

  • Vogiatzis I (2011) Strategies of muscle training in very severe COPD patients. Eur Respir J 38(4):971–975. doi:10.1183/09031936.00075011

    Article  CAS  PubMed  Google Scholar 

  • Wagner PD (1996) Determinants of maximal oxygen transport and utilization. Annu Rev Physiol 58:21–50. doi:10.1146/annurev.ph.58.030196.000321

    Article  CAS  PubMed  Google Scholar 

  • Wahl P, Zinner C, Achtzehn S, Behringer M, Bloch W, Mester J (2011) Effects of acid-base balance and high or low intensity exercise on VEGF and bFGF. Eur J Appl Physiol 111(7):1405–1413

    Article  CAS  PubMed  Google Scholar 

  • Yasuda T, Fukumura K, Fukuda T, Uchida Y, Iida H, Meguro M, Sato Y, Yamasoba T, Nakajima T (2014) Muscle size and arterial stiffness after blood flow-restricted low-intensity resistance training in older adults. Scand J Med Sci Sports 24(5):799–806. doi:10.1111/sms.12087

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the subjects for participating in this study, and CNPq and FAPESC for financial support. Rogerio B. Corvino was supported by a CAPES PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério B. Corvino.

Ethics declarations

Conflict of interest

The authors declared have no conflict of interest.

Additional information

Communicated by Peter Krustrup.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corvino, R.B., Rossiter, H.B., Loch, T. et al. Physiological responses to interval endurance exercise at different levels of blood flow restriction. Eur J Appl Physiol 117, 39–52 (2017). https://doi.org/10.1007/s00421-016-3497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3497-5

Keywords

Navigation