Skip to main content
Log in

Effects of immobilization and aerobic training on proteins related to intramuscular substrate storage and metabolism in young and older men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Aging and inactivity lead to skeletal muscle metabolic inflexibility, but the underlying molecular mechanisms are not entirely elucidated. Therefore, we investigated how muscle lipid and glycogen stores and major regulatory proteins were affected by short-term immobilization followed by aerobic training in young and older men.

Methods

17 young (23 ± 1 years, 24 ± 1 kg m−2, and 20 ± 2 % body fat) and 15 older men (68 ± 1 years; 27 ± 1 kg m−2, and 29 ± 2 % body fat) underwent 2 weeks’ one leg immobilization followed by 6 weeks’ cycle training. Biopsies were obtained from m. vastus lateralis just before immobilization (at inclusion), after immobilization, and the after 6 weeks’ training. The biopsies were analyzed for muscle substrates; muscle perilipin protein (PLIN), glycogen synthase (GS), synaptosomal-associated protein of 23 kDa (SNAP23) protein content, and muscle 3-hydroxyacyl-CoA dehydrogenase (HAD) activity

Results

The older men had higher intramuscular triglyceride (IMTG) (73 %) and Glycogen (16 %) levels compared to the young men, and IMTG tended to increase with immobilization. PLIN2 and 3 protein content increased with immobilization in the older men only. The young men had higher GS (74 %) protein compared to the older men. Immobilization decreased and training restored HAD activity, GS and SNAP23 protein content in young and older men.

Conclusion

Evidence of age-related metabolic inflexibility is presented, seen as body fat and IMTG accumulation. The question arises as to whether IMTG accumulation in the older men is caused by or leading to the increase in PLIN2 and 3 protein content. Training decreased body fat and IMTG levels in both young and older men; hence, training should be prioritized to reduce the detrimental effect of aging on metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CS:

Citrate synthase activity

DXA:

Dual energy X-ray absorptiometry

GLUT4:

Glucose transporter 4

GS:

Glycogen synthase

HAD:

3-Hydroxyacyl-CoA dehydrogenase activity

IMTG:

Intramuscular triglycerides

LD:

Lipid droplet

OGTT:

Oral glucose tolerance test

PLIN:

Perilipin

PVDF:

Polyvinylidene fluoride

SNAP23:

Synaptosomal associated protein of 23 kDa

SDS:

Sodium dodecyl sulphate

References

  • American Diabetes A (2005) Standards of medical care in diabetes. Diabetes Care 28(Suppl 1):S4–S36

    Article  Google Scholar 

  • Beck-Nielsen H (2012) The role of glycogen synthase in the development of hyperglycemia in type 2 diabetes: ‘to store or not to store glucose, that’s the question’. Diabetes Metab Res Rev 28:635–644. doi:10.1002/dmrr.2337

    Article  CAS  PubMed  Google Scholar 

  • Bienso RS et al (2012) GLUT4 and glycogen synthase are key players in bed rest-induced insulin resistance. Diabetes 61:1090–1099. doi:10.2337/db11-0884

    Article  PubMed Central  PubMed  Google Scholar 

  • Bonadonna RC, Groop LC, Simonson DC, DeFronzo RA (1994) Free fatty acid and glucose metabolism in human aging: evidence for operation of the randle cycle. Am J Physiol 266:E501–E509

    CAS  PubMed  Google Scholar 

  • Bosma M et al (2012) The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. HistochemCell Biol 137:205–216

    Article  CAS  Google Scholar 

  • Bostrom P et al (2007) SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. NatCell Biol 9:1286–1293

    Google Scholar 

  • Bostrom P et al (2010) The SNARE protein SNAP23 and the SNARE-interacting protein Munc18c in human skeletal muscle are implicated in insulin resistance/type 2 diabetes. Diabetes 59:1870–1878. doi:10.2337/db09-1503

    Article  PubMed Central  PubMed  Google Scholar 

  • Brandie FM, Aran V, Verma A, McNew JA, Bryant NJ, Gould GW (2008) Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c in vitro. PLoS One 3:e4074. doi:10.1371/journal.pone.0004074

    Article  PubMed Central  PubMed  Google Scholar 

  • Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279:46835–46842. doi:10.1074/jbc.M409340200

    Article  CAS  PubMed  Google Scholar 

  • Bulankina AV et al (2009) TIP47 functions in the biogenesis of lipid droplets. J Cell Biol 185:641–655. doi:10.1083/jcb.200812042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coen PM, Dube JJ, Amati F, Stefanovic-Racic M, Ferrell RE, Toledo FG, Goodpaster BH (2010) Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content. Diabetes 59:80–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526(Pt 1):203–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conte M et al (2013) Increased Plin2 expression in human skeletal muscle is associated with sarcopenia and muscle weakness. PLoS One 8:e73709. doi:10.1371/journal.pone.0073709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Covington JD et al. (2015) Perilipin 3 differentially regulates skeletal muscle lipid oxidation in active, sedentary and type 2 diabetic males. J Clin Endocrinol Metab:JC20144125 doi:10.1210/JC.2014-4125

  • Coyle EF, Martin WH 3rd, Sinacore DR, Joyner MJ, Hagberg JM, Holloszy JO (1984) Time course of loss of adaptations after stopping prolonged intense endurance training. J Appl Physiol Respir Environ Exerc Physiol 57:1857–1864

    CAS  PubMed  Google Scholar 

  • Cree MG et al (2004) Intramuscular and liver triglycerides are increased in the elderly. J Clin Endocrinol Metab 89:3864–3871. doi:10.1210/jc.2003-031986

    Article  CAS  PubMed  Google Scholar 

  • DeFronzo RA (1988) Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37:667–687

    Article  CAS  PubMed  Google Scholar 

  • DeFronzo RA (2004) Dysfunctional fat cells, lipotoxicity and type 2 diabetes. Int J Clin Pract Suppl:9–21

  • Deschenes MR, Holdren AN, McCoy RW (2008) Adaptations to short-term muscle unloading in young and aged men. Med Sci Sports Exerc 40:856–863. doi:10.1249/MSS.0b013e318164f4b6

    Article  PubMed  Google Scholar 

  • Eriksen L, Gronbaek M, Helge JW, Tolstrup JS, Curtis T (2011) The Danish health examination survey 2007–2008 (DANHES 2007–2008). Scand J Public Health 39:203–211. doi:10.1177/1403494810393557

    Article  PubMed  Google Scholar 

  • Ferrara CM, Goldberg AP, Ortmeyer HK, Ryan AS (2006) Effects of aerobic and resistive exercise training on glucose disposal and skeletal muscle metabolism in older men. J Gerontol A Biol Sci Med Sci 61:480–487

    Article  PubMed  Google Scholar 

  • Ferretti G, Antonutto G, Denis C, Hoppeler H, Minetti AE, Narici MV, Desplanches D (1997) The interplay of central and peripheral factors in limiting maximal O2 consumption in man after prolonged bed rest. J Physiol 501(Pt 3):677–686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fogelholm M (2013) New nordic nutrition recommendations are here. Food Nutr Res. doi:10.3402/fnr.v57i0.22903

    PubMed Central  PubMed  Google Scholar 

  • Freedson PS, Melanson E, Sirard J (1998) Calibration of the computer science and applications, Inc. accelerometer. Med Sci Sports Exerc 30:777–781

    Article  CAS  PubMed  Google Scholar 

  • Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86:5755–5761. doi:10.1210/jcem.86.12.8075

    Article  CAS  PubMed  Google Scholar 

  • Gram M, Vigelso A, Yokota T, Hansen CN, Helge JW, Hey-Mogensen M, Dela F (2014) Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men. Exp Gerontol 58:269–278. doi:10.1016/j.exger.2014.08.013

    Article  PubMed  Google Scholar 

  • Gram M, Vigelso A, Yokota T, Helge JW, Dela F, Hey-Mogensen M (2015) Skeletal muscle mitochondrial H2 O2 emission increases with immobilization and decreases after aerobic training in young and older men. J Physiol 593:4011–4027. doi:10.1113/JP270211

    Article  CAS  PubMed  Google Scholar 

  • Helge JW, Watt PW, Richter EA, Rennie MJ, Kiens B (2001) Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans. JPhysiol 537:1009–1020

    Article  CAS  Google Scholar 

  • Hikida RS, Gollnick PD, Dudley GA, Convertino VA, Buchanan P (1989) Structural and metabolic characteristics of human skeletal muscle following 30 days of simulated microgravity. Aviat Space Environ Med 60:664–670

    CAS  PubMed  Google Scholar 

  • Hojlund K (2014) Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J 61:B4890

    PubMed  Google Scholar 

  • Jagerstrom S, Polesie S, Wickstrom Y, Johansson BR, Schroder HD, Hojlund K, Bostrom P (2009) Lipid droplets interact with mitochondria using SNAP23. Cell BiolInt 33:934–940

    Google Scholar 

  • Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49:677–683

    Article  CAS  PubMed  Google Scholar 

  • Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950

    Article  CAS  PubMed  Google Scholar 

  • Kirkendall DT, Garrett WE Jr (1998) The effects of aging and training on skeletal muscle. Am J Sports Med 26:598–602

    CAS  PubMed  Google Scholar 

  • Kortebein P, Ferrando A, Lombeida J, Wolfe R, Evans WJ (2007) Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 297:1772–1774. doi:10.1001/jama.297.16.1772-b

    Article  CAS  PubMed  Google Scholar 

  • Larsen S et al (2014) The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand J Med Sci Sports. doi:10.1111/sms.12252

    Google Scholar 

  • Levadoux E et al (2001) Reduced whole-body fat oxidation in women and in the elderly. Int J Obes Relat Metab Disord 25:39–44

    Article  CAS  PubMed  Google Scholar 

  • Lonnqvist F, Nyberg B, Wahrenberg H, Arner P (1990) Catecholamine-induced lipolysis in adipose tissue of the elderly. J Clin Invest 85:1614–1621. doi:10.1172/JCI114612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Louche K et al (2013) Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J Clin Endocrinol Metab 98:4863–4871. doi:10.1210/jc.2013-2058

    Article  CAS  PubMed  Google Scholar 

  • Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, Troiano RP (2008) Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol 167:875–881. doi:10.1093/aje/kwm390

    Article  PubMed Central  PubMed  Google Scholar 

  • Meredith CN, Frontera WR, Fisher EC, Hughes VA, Herland JC, Edwards J, Evans WJ (1989) Peripheral effects of endurance training in young and old subjects. J Appl Physiol (1985) 66:2844–2849

    CAS  Google Scholar 

  • Moro C, Bajpeyi S, Smith SR (2008) Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity. Am J Physiol Endocrinol Metab 294:E203–E213. doi:10.1152/ajpendo.00624.2007

    Article  CAS  PubMed  Google Scholar 

  • Newsom SA, Schenk S, Li M, Everett AC, Horowitz JF (2011) High fatty acid availability after exercise alters the regulation of muscle lipid metabolism. Metabolism 60:852–859. doi:10.1016/j.metabol.2010.08.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ngo KT, Denis C, Saafi MA, Feasson L, Verney J (2012) Endurance but not resistance training increases intra-myocellular lipid content and beta-hydroxyacyl coenzyme A dehydrogenase activity in active elderly men. Acta Physiol (Oxf) 205:133–144

    Article  CAS  Google Scholar 

  • Nielsen J, Suetta C, Hvid LG, Schroder HD, Aagaard P, Ortenblad N (2010) Subcellular localization-dependent decrements in skeletal muscle glycogen and mitochondria content following short-term disuse in young and old men. Am J Physiol Endocrinol Metab 299:E1053–E1060. doi:10.1152/ajpendo.00324.2010

    Article  CAS  PubMed  Google Scholar 

  • Nørregaard J, Gram M, Vigelsø A, Wiuff C, Kuhlman AB, Helge JW, Dela F (2014) The effect of reduced physical activity and retraining on blood lipids and body composition in young and older Adult men. J Aging Phys Act. doi:10.1123/japa.2014-0079

    PubMed  Google Scholar 

  • Op’t Eijnde B, Urso B, Richter EA, Greenhaff PL, Hespel P (2001) Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes 50:18–23

    Article  Google Scholar 

  • Pan DA et al (1997) Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46:983–988

    Article  CAS  PubMed  Google Scholar 

  • Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA (2012) Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Appl Physiol Nutr Metab 37:724–735. doi:10.1139/h2012-059

    Article  CAS  PubMed  Google Scholar 

  • Petersen KF et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142. doi:10.1126/science.1082889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prats C, Gomez-Cabello A, Hansen AV (2011) Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling. Exp Physiol 96:385–390. doi:10.1113/expphysiol.2010.052860

    Article  CAS  PubMed  Google Scholar 

  • Reihmane D et al (2013) Immobilization increases interleukin-6, but not tumour necrosis factor-alpha, release from the leg during exercise in humans. ExpPhysiol 98:778–783

    CAS  Google Scholar 

  • Reihmane D, Gram M, Vigelsø A, Helge J, Dela F (2015) Exercise promotes IL-6 release from legs in older men with minor response to unilateral immobilization. Eur J Sport Sci. doi:10.1080/17461391.2015.1111939

    Google Scholar 

  • Richter EA, Kiens B, Mizuno M, Strange S (1989) Insulin action in human thighs after one-legged immobilization. J Appl Physiol (1985) 67:19–23

    CAS  Google Scholar 

  • Ringholm S et al (2011) Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle. Am J Physiol Endocrinol Metab 301:E649–E658. doi:10.1152/ajpendo.00230.2011

    Article  CAS  PubMed  Google Scholar 

  • Ritz P, Acheson KJ, Gachon P, Vico L, Bernard JJ, Alexandre C, Beaufrere B (1998) Energy and substrate metabolism during a 42-day bed-rest in a head-down tilt position in humans. Eur J Appl Physiol Occup Physiol 78:308–314

    Article  CAS  PubMed  Google Scholar 

  • Ryan AS, Katzel LI, Prior SJ, McLenithan JC, Goldberg AP, Ortmeyer HK (2014) Aerobic exercise plus weight loss improves insulin sensitivity and increases skeletal muscle glycogen synthase activity in older men. J Gerontol A Biol Sci Med Sci 69:790–798. doi:10.1093/gerona/glt200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schweiger M et al (2008) The C-terminal region of human adipose triglyceride lipase affects enzyme activity and lipid droplet binding. J Biol Chem 283:17211–17220. doi:10.1074/jbc.M710566200

    Article  CAS  PubMed  Google Scholar 

  • Senthivinayagam S, McIntosh AL, Moon KC, Atshaves BP (2013) Plin2 inhibits cellular glucose uptake through interactions with SNAP23, a SNARE complex protein. PLoS One 8:e73696. doi:10.1371/journal.pone.0073696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaw CS, Shepherd SO, Wagenmakers AJ, Hansen D, Dendale P, van Loon LJ (2012) Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibres of patients with type 2 diabetes. Am J Physiol Endocrinol Metab

  • Shepherd SO et al (2012) Preferential utilization of perilipin 2-associated intramuscular triglycerides during 1 h of moderate-intensity endurance-type exercise. Exp Physiol 97:970–980. doi:10.1113/expphysiol.2012.064592

    Article  CAS  PubMed  Google Scholar 

  • Shepherd SO et al (2013) Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol 591:657–675. doi:10.1113/jphysiol.2012.240952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sial S, Coggan AR, Carroll R, Goodwin J, Klein S (1996) Fat and carbohydrate metabolism during exercise in elderly and young subjects. Am J Physiol 271:E983–E989

    CAS  PubMed  Google Scholar 

  • Solomon TP, Marchetti CM, Krishnan RK, Gonzalez F, Kirwan JP (2008) Effects of aging on basal fat oxidation in obese humans. Metabolism 57:1141–1147. doi:10.1016/j.metabol.2008.03.021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srere PA (1969) Citrate synthase. Methods Enzymol 13:3–11

    Article  CAS  Google Scholar 

  • Stinkens R, Goossens GH, Jocken JW, Blaak EE (2015) Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 16:715–757. doi:10.1111/obr.12298

    Article  CAS  PubMed  Google Scholar 

  • Storlien L, Oakes ND, Kelley DE (2004) Metabolic flexibility. Proc Nutr Soc 63:363–368. doi:10.1079/PNS2004349

    Article  CAS  PubMed  Google Scholar 

  • Suetta C et al (2009) Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol (1985) 107:1172–1180. doi:10.1152/japplphysiol.00290.2009

    Article  CAS  Google Scholar 

  • Suetta C et al (2012) Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS One 7:e51238. doi:10.1371/journal.pone.0051238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sztalryd C et al (2006) Functional compensation for adipose differentiation-related protein (ADFP) by Tip47 in an ADFP null embryonic cell line. J Biol Chem 281:34341–34348. doi:10.1074/jbc.M602497200

    Article  CAS  PubMed  Google Scholar 

  • Taylor AW, Thayer R, Rao S (1972) Human skeletal muscle glycogen synthetase activities with exercise and training. Can J Physiol Pharmacol 50:411–415

    Article  CAS  PubMed  Google Scholar 

  • Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53:319–336. doi:10.1146/annurev.med.53.082901.104057

    Article  CAS  PubMed  Google Scholar 

  • Vigelsø A, Prats C, Ploug T, Dela F, Helge JW (2013) Human skeletal muscle perilipin 2 and 3 expression varies with insulin sensitivity. J Biomed Sci Eng 06:65–72. doi:10.4236/jbise.2013.65A010

    Article  Google Scholar 

  • Vigelsø A, Dybboe R, Hansen CN, Dela F, Helge JW, Guadalupe Grau A (2015a) GAPDH and beta-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle. J Appl Physiol (1985) 118:386–394. doi:10.1152/japplphysiol.00840.2014

    Article  Google Scholar 

  • Vigelsø A, Gram M, Wiuff C, Andersen JL, Helge JW, Dela F (2015b) 6 weeks’ aerobic retraining after 2 weeks’ immobilization restores leg lean mass, and aerobic capacity but does not fully rehabilitate leg strength in young and older men. J Rehabil Med. doi:10.2340/16501977-1961

    PubMed  Google Scholar 

  • Wall BT, Dirks ML, Snijders T, Stephens FB, Senden JM, Verscheijden ML, van Loon LJ (2015) Short-term muscle disuse atrophy is not associated with increased intramuscular lipid deposition or a decline in the maximal activity of key mitochondrial enzymes in young and older males. Exp Gerontol 61:76–83. doi:10.1016/j.exger.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  • Wang H et al (2011) Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res 52:2159–2168. doi:10.1194/jlr.M017939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The technical assistance of Michael Taulo Lund, MD; Merethe Hansen, MD; Jesper Nørregaard, MD; Regitze Kraunsøe; Katrine Qvist; and Jeppe Bach is gratefully acknowledged. This work was supported by the UNIK research program: Food, Fitness & Pharma for Health and Disease (Danish Ministry of Science, Technology and Innovation), The Nordea Foundation, A.P. Møller and Hustru Chastine Mc-Kinney Møllers Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Vigelsø.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Communicated by Fabio Fischetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigelsø, A., Gram, M., Wiuff, C. et al. Effects of immobilization and aerobic training on proteins related to intramuscular substrate storage and metabolism in young and older men. Eur J Appl Physiol 116, 481–494 (2016). https://doi.org/10.1007/s00421-015-3302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3302-x

Keywords

Navigation