Skip to main content
Log in

Influence of isolated or simultaneous application of electromyostimulation and vibration on leg blood flow

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to analyze the acute effects of isolated or simultaneously applied whole-body vibration (WBV) and electromyostimulation (ES) on the popliteal arterial blood velocity and skin temperature (ST) of the calf.

Methods

Thirteen healthy males were assessed in five different sessions. After a familiarization session, four interventions were applied in random order; WBV, ES, simultaneous WBV and ES (WBV+ES), and 30 s of WBV followed by 30 s of ES (WBV30/ES30). Each intervention consisted of 10 sets × 1 min ON + 1 min OFF. The subject was standing on the vibration platform (squat position, 30° knee flexion, 26 Hz, 5 mm peak-to-peak), and ES was applied on the gastrocnemius of both the legs (8 Hz, 400 µs).

Results

The WBV+ES intervention was the only one that maintained the mean blood velocity (MBV) elevated above baseline during the 10 sets, from set-1 (134.6 % p < 0.01) to set-10 (112.6 % p < 0.05). The combined interventions were the only ones that maintained the peak blood velocity (PBV) elevated above baseline during all the sets, from set-1 (113.5 % p < 0.001) to set-10 (88.8 % p < 0.01) and from set-1 (58.4 % p < 0.01) to set-10 (49.1 % p < 0.05) for WBV+ES and WBV30/ES30, respectively.

Conclusion

The simultaneous application of WBV and ES produced a general greater increase in MBV and PBV than the application of each method alone or consecutive. This novel methodological proposal could be interesting in different fields such as sports or the rehabilitation process of different pathologies, to achieve an enhanced peripheral blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ES:

Electromyostimulation

MBV:

Mean blood velocity

PBV:

Peak blood velocity

ST:

Superficial temperature

WBV:

Whole-body vibration

References

  • Abraham P, Mateus V, Bieuzen F, Ouedraogo N, Cisse F, Leftheriotis G (2013) Calf muscle stimulation with the Veinoplus device results in a significant increase in lower limb inflow without generating limb ischemia or pain in patients with peripheral artery disease. J Vasc Surg 57(3):714–719. doi:10.1016/j.jvs.2012.08.117

    Article  PubMed  Google Scholar 

  • Babault N, Cometti C, Maffiuletti NA, Deley G (2011) Does electrical stimulation enhance post-exercise performance recovery? Eur J Appl Physiol 111(10):2501–2507. doi:10.1007/s00421-011-2117-7

    Article  PubMed  Google Scholar 

  • Baker LL, McNeal DR, Benton LA, Bowman BR, Waters RL (1993) Neuromuscular Electrical Stimulation – a practical guide, 3rd edn. Rancho Los Amigos Research and Education Institute, Downey

    Google Scholar 

  • Beijer A, Degens H, Weber T, Rosenberger A, Gehlert S, Herrera F, Kohl-Bareis M, Zange J, Bloch W, Rittweger J (2014) Microcirculation of skeletal muscle adapts differently to a resistive exercise intervention with and without superimposed whole-body vibrations. Clin Physiol Funct Imaging. doi:10.1111/cpf.12180

    Google Scholar 

  • Broderick BJ, O’Briain DE, Breen PP, Kearns SR, Olaighin G (2010) A pilot evaluation of a neuromuscular electrical stimulation (NMES) based methodology for the prevention of venous stasis during bed rest. Med Eng Phys 32(4):349–355. doi:10.1016/j.medengphy.2010.01.006

    Article  PubMed  Google Scholar 

  • Clarke Moloney M, Lyons GM, Breen P, Burke PE, Grace PA (2006) Haemodynamic study examining the response of venous blood flow to electrical stimulation of the gastrocnemius muscle in patients with chronic venous disease. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 31(3):300–305. doi:10.1016/j.ejvs.2005.08.003

    Article  CAS  Google Scholar 

  • Cochrane DJ, Stannard SR, Walmsely A, Firth EC (2008) The acute effect of vibration exercise on concentric muscular characteristics. J Sci Med Sport Sport Med Aust 11(6):527–534. doi:10.1016/j.jsams.2007.04.006

    Article  CAS  Google Scholar 

  • Corley G, Birlea S, Breen P, Olaighin G (2009) Popliteal blood flow and plantar flexion force due to neuromuscular electrical stimulation (NMES) of the calf muscle pump are strongly associated with NMES intensity. Paper presented at the Annual International Conference of the IEEE Engineering in Medicine and Biology Society

  • Corley GJ, Breen PP, Birlea SI, Serrador JM, Grace PA, Olaighin G (2012) Hemodynamic effects of habituation to a week-long program of neuromuscular electrical stimulation. Med Eng Phys 34(4):459–465. doi:10.1016/j.medengphy.2011.08.005

    Article  PubMed  Google Scholar 

  • Coza A, Nigg BM, Dunn JF (2011) Effects of vibrations on gastrocnemius medialis tissue oxygenation. Med Sci Sports Exerc 43(3):509–515. doi:10.1249/MSS.0b013e3181f2589f

    Article  PubMed  Google Scholar 

  • Fuller JT, Thomson RL, Howe PR, Buckley JD (2013) Effect of vibration on muscle perfusion: a systematic review. Clin Physiol Funct Imaging 33(1):1–10. doi:10.1111/j.1475-097X.2012.01161.x

    Article  PubMed  Google Scholar 

  • Gobbo M, Maffiuletti NA, Orizio C, Minetto MA (2014) Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. J Neuroeng Rehabil 11:17. doi:10.1186/1743-0003-11-17

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffin M, Nicolaides AN, Bond D, Geroulakos G, Kalodiki E (2010) The efficacy of a new stimulation technology to increase venous flow and prevent venous stasis. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 40(6):766–771. doi:10.1016/j.ejvs.2010.06.019

    Article  CAS  Google Scholar 

  • Halliwill JR (2003) Hypoxic regulation of blood flow in humans. Skeletal muscle circulation and the role of epinephrine. Adv Exp Med Biol 543:223–236

    Article  CAS  PubMed  Google Scholar 

  • Hazell TJ, Thomas GW, Deguire JR, Lemon PW (2008) Vertical whole-body vibration does not increase cardiovascular stress to static semi-squat exercise. Eur J Appl Physiol 104(5):903–908. doi:10.1007/s00421-008-0847-y

    Article  PubMed  Google Scholar 

  • Herrero AJ, Martin J, Martin T, Garcia-Lopez D, Garatachea N, Jimenez B, Marin PJ (2011a) Whole-body vibration alters blood flow velocity and neuromuscular activity in Friedreich’s ataxia. Clin Physiol Funct Imaging 31(2):139–144. doi:10.1111/j.1475-097X.2010.00992.x

    PubMed  Google Scholar 

  • Herrero AJ, Menendez H, Gil L, Martin J, Martin T, Garcia-Lopez D, Gil-Agudo A, Marin PJ (2011b) Effects of whole-body vibration on blood flow and neuromuscular activity in spinal cord injury. Spinal cord 49(4):554–559. doi:10.1038/sc.2010.151

    Article  CAS  PubMed  Google Scholar 

  • Johnson PK, Feland JB, Johnson AW, Mack GW, Mitchell UH (2014) Effect of Whole Body Vibration on Skin Blood Flow and Nitric Oxide Production. J Diabet Sci Technol. doi:10.1177/1932296814536289

    Google Scholar 

  • Kang JH, Hyong IH (2014) The influence of neuromuscular electrical stimulation on the heart rate variability in healthy subjects. J Phys Ther Sci 26(5):633–635. doi:10.1589/jpts.26.633

    Article  PubMed Central  PubMed  Google Scholar 

  • Kerschan-Schindl K, Grampp S, Henk C, Resch H, Preisinger E, Fialka-Moser V, Imhof H (2001) Whole-body vibration exercise leads to alterations in muscle blood volume. Clin Physiol 21(3):377–382

    Article  CAS  PubMed  Google Scholar 

  • Lattier G, Millet GY, Martin A, Martin V (2004) Fatigue and recovery after high-intensity exercise. Part II: recovery interventions. Int J Sports Med 25(7):509–515. doi:10.1055/s-2004-820946

    Article  CAS  PubMed  Google Scholar 

  • Li YS, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38(10):1949–1971. doi:10.1016/j.jbiomech.2004.09.030

    Article  PubMed  Google Scholar 

  • Lohman EB 3rd, Petrofsky JS, Maloney-Hinds C, Betts-Schwab H, Thorpe D (2007) The effect of whole body vibration on lower extremity skin blood flow in normal subjects. Med Sci Monit Int Med J Exp Clin Res 13(2):CR71–CR76

  • Lohman EB 3rd, Bains GS, Lohman T, DeLeon M, Petrofsky JS (2011) A comparison of the effect of a variety of thermal and vibratory modalities on skin temperature and blood flow in healthy volunteers. Med Sci Monit Int Med J Exp Clin Res 17(9):MT72–MT81

  • Lohman EB 3rd, Sackiriyas KS, Bains GS, Calandra G, Lobo C, Nakhro D, Malthankar G, Paul S (2012) A comparison of whole body vibration and moist heat on lower extremity skin temperature and skin blood flow in healthy older individuals. Med Sci Monit Int Med J Exp Clin Res 18(7):CR415–CR424

  • Lyons GM, Leane GE, Grace PA (2002) The effect of electrical stimulation of the calf muscle and compression stocking on venous blood flow velocity. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 23(6):564–566

    Article  CAS  Google Scholar 

  • Lythgo N, Eser P, de Groot P, Galea M (2009) Whole-body vibration dosage alters leg blood flow. Clin Physiol Funct Imaging 29(1):53–59. doi:10.1111/j.1475-097X.2008.00834.x

    Article  PubMed  Google Scholar 

  • Maffiuletti NA (2010) Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110(2):223–234. doi:10.1007/s00421-010-1502-y

    Article  PubMed  Google Scholar 

  • Maloney-Hinds C, Petrofsky JS, Zimmerman G (2008) The effect of 30 Hz vs. 50 Hz passive vibration and duration of vibration on skin blood flow in the arm. Med Sci Monit Int Med J Exp Clin Res 14 (3):CR112-116

  • Maloney-Hinds C, Petrofsky JS, Zimmerman G, Hessinger DA (2009) The role of nitric oxide in skin blood flow increases due to vibration in healthy adults and adults with type 2 diabetes. Diabet Technol Ther 11(1):39–43. doi:10.1089/dia.2008.0011

    Article  CAS  Google Scholar 

  • Marin PJ, Bunker D, Rhea MR, Ayllon FN (2009) Neuromuscular activity during whole-body vibration of different amplitudes and footwear conditions: implications for prescription of vibratory stimulation. J Strength Condition Res Nat Strength Condition Assoc 23(8):2311–2316. doi:10.1519/JSC.0b013e3181b8d637

    Article  Google Scholar 

  • Martin V, Millet GY, Lattier G, Perrod L (2004) Effects of recovery modes after knee extensor muscles eccentric contractions. Med Sci Sports Exerc 36(11):1907–1915

    Article  PubMed  Google Scholar 

  • Petrofsky JS, Schwab E, Lo T, Cuneo M, Lawson D (2007) The thermal effect on the blood flow response to electrical stimulation. Med Sci Monit Int Med J Exp Clin Res 13(11): CR498–CR504

  • Petrofsky JS, Lawson D, Berk L, Suh H (2010) Enhanced healing of diabetic foot ulcers using local heat and electrical stimulation for 30 min three times per week. J Diabet 2(1):41–46. doi:10.1111/j.1753-0407.2009.00058.x

    Article  Google Scholar 

  • Prior BM, Yang HT, Terjung RL (2004) What makes vessels grow with exercise training? J Appl Physiol 97(3):1119–1128. doi:10.1152/japplphysiol.00035.2004

    Article  PubMed  Google Scholar 

  • Prior SJ, McKenzie MJ, Joseph LJ, Ivey FM, Macko RF, Hafer-Macko CE, Ryan AS (2009) Reduced skeletal muscle capillarization and glucose intolerance. Microcirculation 16(3):203–212. doi:10.1080/10739680802502423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinke S, Karhausen T, Doehner W, Taylor W, Hottenrott K, Duda GN, Reinke P, Volk HD, Anker SD (2009) The influence of recovery and training phases on body composition, peripheral vascular function and immune system of professional soccer players. PLoS One 4(3):e4910. doi:10.1371/journal.pone.0004910

    Article  PubMed Central  PubMed  Google Scholar 

  • Rittweger J, Ehrig J, Just K, Mutschelknauss M, Kirsch KA, Felsenberg D (2002) Oxygen uptake in whole-body vibration exercise: influence of vibration frequency, amplitude, and external load. Int J Sports Med 23(6):428–432. doi:10.1055/s-2002-33739

    Article  CAS  PubMed  Google Scholar 

  • Rittweger J, Moss AD, Colier W, Stewart C, Degens H (2010) Muscle tissue oxygenation and VEGF in VO-matched vibration and squatting exercise. Clin Physiol Funct Imaging 30(4):269–278. doi:10.1111/j.1475-097X.2010.00937.x

    Article  CAS  PubMed  Google Scholar 

  • Ritzmann R, Gollhofer A, Kramer A (2013) The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur J Appl Physiol 113(1):1–11. doi:10.1007/s00421-012-2402-0

    Article  PubMed  Google Scholar 

  • Sanudo B, Cesar-Castillo M, Tejero S, Cordero-Arriaza FJ, Oliva-Pascual-Vaca A, Figueroa A (2013) Effects of vibration on legs blood flow after intense exercise and its influence on subsequent exercise performance. J Strengthc Condition Res Nat Strength Condition Assoc. doi:10.1519/JSC.0b013e3182a20f2c

    Google Scholar 

  • Stebbings GK, Morse CI, McMahon GE, Onambele GL (2013) Resting arterial diameter and blood flow changes with resistance training and detraining in healthy young individuals. J Athl Train 48(2):209–219. doi:10.4085/1062-6050-48.1.17

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanderthommen M, Depresseux JC, Dauchat L, Degueldre C, Croisier JL, Crielaard JM (2002) Blood flow variation in human muscle during electrically stimulated exercise bouts. Arch Phys Med Rehabil 83(7):936–941

    Article  PubMed  Google Scholar 

  • Wilmore JH, Costill DL, Kenney WL (2012) Physiology of Sport and Exercise, 5th edn. Human Kinetics, Champaign

    Google Scholar 

  • Zange J, Haller T, Muller K, Liphardt AM, Mester J (2009) Energy metabolism in human calf muscle performing isometric plantar flexion superimposed by 20-Hz vibration. Eur J Appl Physiol 105(2):265–270. doi:10.1007/s00421-008-0898-0

    Article  CAS  PubMed  Google Scholar 

  • Zange J, Molitor S, Illbruck A, Muller K, Schonau E, Kohl-Bareis M, Rittweger J (2014) In the unloaded lower leg, vibration extrudes venous blood out of the calf muscles probably by direct acceleration and without arterial vasodilation. Eur J Appl Physiol. doi:10.1007/s00421-014-2834-9

    Google Scholar 

Download references

Acknowledgments

This study was carried out thanks to funding from the Ministry of Education of the Government of Castilla y León.

Conflict of interest

The authors declare no conflict of interest regarding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Menéndez.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menéndez, H., Martín-Hernández, J., Ferrero, C. et al. Influence of isolated or simultaneous application of electromyostimulation and vibration on leg blood flow. Eur J Appl Physiol 115, 1747–1755 (2015). https://doi.org/10.1007/s00421-015-3161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3161-5

Keywords

Navigation