Skip to main content
Log in

The effect of an amino acid beverage on glucose response and glycogen replenishment after strenuous exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

We previously reported that an amino acid mixture (AA) was able to lower the glucose response to an oral glucose challenge in both rats and humans. Increased glucose uptake and glycogen storage in muscle might be associated with the faster blood glucose clearance. We therefore tested the effect of two different doses of AA provided with a carbohydrate supplement on blood glucose homeostasis and muscle glycogen replenishment in human subjects after strenuous aerobic exercise.

Methods

Ten subjects received a carbohydrate (1.2 g/kg body weight, CHO), CHO/HAA (CHO + 13 g AA), or CHO/LAA (CHO + 6.5 g AA) supplement immediately and 2 h after an intense cycling bout. Muscle biopsies were performed immediately and 4 h after exercise.

Results

The glucose responses for CHO/HAA and CHO/LAA during recovery were significantly lower than CHO, as was the glucose area under the curve (CHO/HAA 1259.9 ± 27.7, CHO/LAA 1251.5 ± 47.7, CHO 1376.8 ± 52.9 mmol/L 4 h, p < 0.05). Glycogen storage rate was significantly lower in CHO/HAA compared with CHO, while it did not differ significantly between CHO/LAA or CHO (CHO/HAA 15.4 ± 2.0, CHO/LAA 18.1 ± 2.0, CHO 21.5 ± 1.4 µmol/g wet muscle 4 h). CHO/HAA caused a significantly higher insulin response and a greater effect on mTOR and Akt/PKB phosphorylation compared with CHO. Phosphorylation of AS160 and glycogen synthase did not differ across treatments. Likewise, there were no differences in blood lactate across treatments.

Conclusions

The AA lowered the glucose response to a carbohydrate supplement after strenuous exercise. However, it was not effective in facilitating subsequent muscle glycogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2-DG:

2-Deoxyglucose

AA:

Amino acid mixture

AS160:

Akt substrate of 160 kDa

AUC:

Area under the curve

CV:

Coefficient of variance

GLUT4:

Glucose-transporter-4

GS:

Glycogen synthase

GSK-3:

Glycogen synthase kinase-3

HR:

Heart rate

KOH:

Potassium hydroxide

mTOR:

Mammalian target of rapamycin

NFDM:

Nonfat dry milk

OGTT:

Oral glucose tolerance test

PCA:

Perchloric acid

RPE:

Ratings of perceived exertion

SE:

Standard error

TTBS:

Tris-Tween-buffered saline

VO2max :

Maximum oxygen uptake

References

  • Ader M, Bergman RN (1990) Peripheral effects of insulin dominate suppression of fasting hepatic glucose production. Am J Physiol 258:E1020–E1032

    CAS  PubMed  Google Scholar 

  • Adkins A et al (2003) Higher insulin concentrations are required to suppress gluconeogenesis than glycogenolysis in nondiabetic humans. Diabetes 52:2213–2220

    Article  CAS  PubMed  Google Scholar 

  • Ahlborg G, Wahren J, Felig P (1986) Splanchnic and peripheral glucose and lactate metabolism during and after prolonged arm exercise. J Clin Invest 77:690–699. doi:10.1172/JCI112363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Armstrong JL, Bonavaud SM, Toole BJ, Yeaman SJ (2001) Regulation of glycogen synthesis by amino acids in cultured human muscle cells. J Biol Chem 276:952–956. doi:10.1074/jbc.M004812200

    Article  CAS  PubMed  Google Scholar 

  • Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ (2010) Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids 38:1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71:140–150

    Article  CAS  PubMed  Google Scholar 

  • Bernard JR, Liao YH, Hara D, Ding Z, Chen CY, Nelson JL, Ivy JL (2011) An amino acid mixture improves glucose tolerance and insulin signaling in Sprague–Dawley rats. Am J Physiol Endocrinol Metab 300:E752–E760. doi:10.1152/ajpendo.00643.2010

    Article  CAS  PubMed  Google Scholar 

  • Bernard JR, Liao YH, Ding Z, Hara D, Kleinert M, Nelson JL, Ivy JL (2013) An amino acid mixture improves glucose tolerance and lowers insulin resistance in the obese Zucker rat. Amino Acids 45:191–203. doi:10.1007/s00726-013-1488-y

    Article  CAS  PubMed  Google Scholar 

  • Boden G, Cheung P, Stein TP, Kresge K, Mozzoli M (2002) FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab 283:E12–E19

    Article  CAS  PubMed  Google Scholar 

  • Bogardus C, Lillioja S, Stone K, Mott D (1984) Correlation between muscle glycogen synthase activity and in vivo insulin action in man. J Clin Invest 73:1185–1190. doi:10.1172/JCI111304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonadonna RC, del Prato S, Bonora E, Gulli G, Solini A, DeFronzo RA (1993) Effects of physiological hyperinsulinemia on the intracellular metabolic partition of plasma glucose. Am J Physiol 265:E943–E953

    CAS  PubMed  Google Scholar 

  • Chiasson JL, Atkinson RL, Cherrington AD, Keller U, Sinclair-Smith BC, Lacy WW, Liljenquist JE (1980) Effects of insulin at two dose levels on gluconeogenesis from alanine in fasting man. Metabolism 29:810–818 (0026-0495(80)90119-5 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Cinar V, Polat Y, Mogulkoc R, Nizamlioglu M, Baltaci AK (2008) The effect of magnesium supplementation on glucose and insulin levels of tae-kwan-do sportsmen and sedentary subjects. Pak J Pharm Sci 21:237–240

    CAS  PubMed  Google Scholar 

  • Cohen P (1999) The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction. Philos Trans R Soc Lond B Biol Sci 354:485–495. doi:10.1098/rstb.1999.0399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789. doi:10.1038/378785a0

    Article  CAS  PubMed  Google Scholar 

  • De Bodo RC, Altszuler N, Dunn A, Steele R, Armstrong DT, Bishop JS (1959) Effects of exogenous and endogenous insulin on glucose utilization and production. Ann N Y Acad Sci 82:431–451

    Article  Google Scholar 

  • DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP (1981) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Doi M, Yamaoka I, Fukunaga T, Nakayama M (2003) Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12 myotubes. Biochem Biophys Res Commun 312:1111–1117 (S0006291X03024045 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Doi M, Yamaoka I, Nakayama M, Mochizuki S, Sugahara K, Yoshizawa F (2005) Isoleucine, a blood glucose-lowering amino acid, increases glucose uptake in rat skeletal muscle in the absence of increases in AMP-activated protein kinase activity. J Nutr 135:2103–2108 (135/9/2103 [pii])

    CAS  PubMed  Google Scholar 

  • Doi M, Yamaoka I, Nakayama M, Sugahara K, Yoshizawa F (2007) Hypoglycemic effect of isoleucine involves increased muscle glucose uptake and whole body glucose oxidation and decreased hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 292:E1683–E1693. doi:10.1152/ajpendo.00609.2006

    Article  CAS  PubMed  Google Scholar 

  • Gastaldelli A et al (2001) Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes 50:1807–1812

    Article  CAS  PubMed  Google Scholar 

  • Goodman CA (2014) The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli. Rev Physiol Biochem Pharmacol. doi:10.1007/112_2013_17

    PubMed  Google Scholar 

  • Haesler E, Schneiter P, Temler E, Jequier E, Tappy L (1994) Effects of infused amino acids and lipids on glucose metabolism in healthy lean humans. Int J Obes Relat Metab Disord 18:307–312

    CAS  PubMed  Google Scholar 

  • Hohorst HJ (1965) Determination of L-lactate with LDH and DPN. In: Bergmeywe HU (ed) Methods of enzymatic analysis. Academic, New York, pp 265–270

    Google Scholar 

  • Ikehara O, Kawasaki N, Maezono K, Komatsu M, Konishi A (2008) Acute and chronic treatment of l-isoleucine ameliorates glucose metabolism in glucose-intolerant and diabetic mice. Biol Pharm Bull 31:469–472 (JST.JSTAGE/bpb/31.469 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Jurimae T, Karelson K, Smirnova T, Viru A (1990) The effect of a single-circuit weight-training session on the blood biochemistry of untrained university students. Eur J Appl Physiol Occup Physiol 61:344–348

    Article  CAS  PubMed  Google Scholar 

  • Katz LD, Glickman MG, Rapoport S, Ferrannini E, DeFronzo RA (1983) Splanchnic and peripheral disposal of oral glucose in man. Diabetes 32:675–679

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Shantz LM, Horetsky RL, Jefferson LS (1999) Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J Biol Chem 274:11647–11652

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Farrell PA, Jefferson LS (2002) Invited Review: role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol 93:1168–1180. doi:10.1152/japplphysiol.00221.2002

    Article  CAS  PubMed  Google Scholar 

  • Kleinert M, Liao YH, Nelson JL, Bernard JR, Wang W, Ivy JL (2011) An amino acid mixture enhances insulin-stimulated glucose uptake in isolated rat epitrochlearis muscle. J Appl Physiol 111:163–169. doi:10.1152/japplphysiol.01368.2010

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mandarino LJ, Wright KS, Verity LS, Nichols J, Bell JM, Kolterman OG, Beck-Nielsen H (1987) Effects of insulin infusion on human skeletal muscle pyruvate dehydrogenase, phosphofructokinase, and glycogen synthase. Evidence for their role in oxidative and nonoxidative glucose metabolism. J Clin Invest 80:655–663. doi:10.1172/JCI113118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mandarino LJ, Consoli A, Jain A, Kelley DE (1993) Differential regulation of intracellular glucose metabolism by glucose and insulin in human muscle. Am J Physiol 265:E898–E905

    CAS  PubMed  Google Scholar 

  • Morifuji M, Koga J, Kawanaka K, Higuchi M (2009) Branched-chain amino acid-containing dipeptides, identified from whey protein hydrolysates, stimulate glucose uptake rate in L6 myotubes and isolated skeletal muscles. J Nutr Sci Vitaminol (Tokyo) 55:81–86 (JST.JSTAGE/jnsv/55.81 [pii])

    Article  CAS  Google Scholar 

  • Nishitani S, Matsumura T, Fujitani S, Sonaka I, Miura Y, Yagasaki K (2002) Leucine promotes glucose uptake in skeletal muscles of rats. Biochem Biophys Res Commun 299:693–696

    Article  CAS  PubMed  Google Scholar 

  • Nuttall FQ, Schweim K, Gannon MC (2008) Effect of orally administered isoleucine with and without glucose on insulin, glucagon and glucose concentrations in non-diabetic subjects. the European e-Journal of Clinical. Nutr Metab 3:e152–e158

    Google Scholar 

  • Patel MS, Roche TE (1990) Molecular biology and biochemistry of pyruvate dehydrogenase complexes. Faseb J 4:3224–3233

    CAS  PubMed  Google Scholar 

  • Peyrollier K, Hajduch E, Blair AS, Hyde R, Hundal HS (2000) l-leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the l-leucine-induced up-regulation of system A amino acid transport. Biochem J 350(Pt 2):361–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rizza RA, Mandarino LJ, Gerich JE (1981) Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol 240:E630–E639

    CAS  PubMed  Google Scholar 

  • Roy A, Parker RS (2007) Dynamic modeling of exercise effects on plasma glucose and insulin levels. J Diabetes Sci Technol 1:338–347

    Article  PubMed Central  PubMed  Google Scholar 

  • Steele R, Bishop JS, Dunn A, Altszuler N, Rathbeb I, Debodo RC (1965) Inhibition by insulin of hepatic glucose production in the normal dog. Am J Physiol 208:301–306

    CAS  PubMed  Google Scholar 

  • Sutherland C, Cohen P (1994) The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett 338:37–42 (0014-5793(94)80112-6 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Sutherland C, Leighton IA, Cohen P (1993) Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 296(Pt 1):15–19

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tappy L et al (1992) Effects of infused amino acids on glucose production and utilization in healthy human subjects. Am J Physiol 262:E826–E833

    CAS  PubMed  Google Scholar 

  • Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22:158–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang B, Kammer LM, Ding Z, Lassiter DG, Hwang J, Nelson JL, Ivy JL (2012) Amino acid mixture acutely improves the glucose tolerance of healthy overweight adults. Nutr Res 32:30–38. doi:10.1016/j.nutres.2011.11.006

    Article  PubMed  Google Scholar 

  • Wieland OH (1983) The mammalian pyruvate dehydrogenase complex: structure and regulation. Rev Physiol Biochem Pharmacol 96:123–170

    Article  CAS  PubMed  Google Scholar 

  • Zawadzki KM, Yaspelkis BB 3rd, Ivy JL (1992) Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol 72:1854–1859

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mina Rathbun, Benjamin Dessard, and Lynne Kammer for their excellent technical assistance. We would also like to thank the subjects who gave their valuable time to participate in this study.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Wang.

Additional information

Communicated by Michael Lindinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Ding, Z., Wang, W. et al. The effect of an amino acid beverage on glucose response and glycogen replenishment after strenuous exercise. Eur J Appl Physiol 115, 1283–1294 (2015). https://doi.org/10.1007/s00421-015-3098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3098-8

Keywords

Navigation