Skip to main content
Log in

Changes in electrical pain threshold of fascia and muscle after initial and secondary bouts of elbow flexor eccentric exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This study investigated changes in electrical pain threshold (EPT) after repeated eccentric exercise bouts to test the hypothesis that fascia would become more sensitive than muscle when greater delayed onset muscle soreness (DOMS) is induced.

Methods

Ten young men performed two eccentric exercise bouts (ECC1, ECC2) consisting of ten sets of six maximal isokinetic eccentric contractions of the elbow flexors with the same arm separated by 4 weeks. Maximal voluntary isometric contraction torque, range of motion, muscle soreness assessed by a visual analogue scale (VAS) and pressure pain threshold (PPT) were measured before, immediately after and 1–5 days after exercise. EPT was assessed in the biceps brachii fascia (BBF), biceps brachii muscle, and brachialis fascia (BF) 1 day before, immediately after, and 1, 2 and 4 days after exercise.

Results

All measures showed smaller changes (P < 0.05) after ECC2 than ECC1. EPT decreased after both bouts and the largest decreases were evident at 2 days post-exercise (P < 0.05). The decreases in EPT after ECC1 were greater (P < 0.05) for both BBF (Baseline: 1.45 ± 0.23 mA, 2 days post-exercise: 0.13 ± 0.11 mA) and BF (1.64 ± 0.29 mA, 0.26 ± 0.2 mA) than muscle (1.56 ± 0.29 mA, 0.69 ± 0.33 mA). Changes in EPT were correlated with the changes in PPT (r = 0.63–0.87, P ≤ 0.05) but not with VAS (r = −0.01 to 0.50).

Conclusion

These results show that fascia becomes more sensitive than muscle to electrical stimulation after the initial eccentric exercise, suggesting that damage inflammation to fascia than muscle fibres is more associated with DOMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BBF:

Biceps brachii fascia

BF:

Brachialis fascia

CV:

Coefficient of variation

DOMS:

Delayed onset muscle soreness

ECC:

Eccentric exercise

EPT:

Electrical pain threshold

MVC:

Maximal voluntary contraction

PPT:

Pressure pain threshold

ROM:

Range of motion

SEMs:

Standard error of measurements

VAS:

Visual analogue scale

References

  • Andres KH, von During M, Schmidt RF (1985) Sensory innervation of the achilles tendon by group III and IV afferent fibers. Anat Embryol (Berl) 172:145–156

    Article  CAS  Google Scholar 

  • Armstrong RB (1984) Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med Sci Sports Exerc 16:529–538

    CAS  PubMed  Google Scholar 

  • Chen TC, Nosaka K, Sacco P (2007) Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. J Appl Physiol 102:992–999

    Article  PubMed  Google Scholar 

  • Cheung K, Hume PA, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 33:145–164

    Article  PubMed  Google Scholar 

  • Crameri RM, Aagaard P, Ovortrup K, Langberg H, Olesen JK (2007) Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol 583:365–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deising S, Weinkayf B, Blunk J, Obreja O, Schmelz M, Rukwied R (2012) NGF-evoked sensitization of muscle fascia nocieptors in humans. Pain 153:1673–1679

    Article  CAS  PubMed  Google Scholar 

  • Gibson W, Arendt-Nielsen L, Graven-Nielsen T (2006) Delayed onset muscle soreness at tendon–bone junction and muscle tissue is associated with facilitated referred pain. Exp Brain Res 174:351–360

    Article  PubMed  Google Scholar 

  • Gibson W, Arendt-Nielsen L, Taguchi T, Mizumura K, Graven-Nielsen T (2009) Increased pain from muscle fascia following eccentric exercise: animal and human fingings. Exp Brain Res 194:299–308

    Article  PubMed  Google Scholar 

  • Howatson G, van Someren KA (2008) The prevention and treatment of exercise-induced muscle damage. Sports Med 38:483–503

    Article  PubMed  Google Scholar 

  • Howatson G, van Someren K, Hortobáguyi T (2007) Repeated bout effect after maximal eccentric exercise. Int J Sports Med 28:557–563

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Okada K, Kawakita K (2004) A proposed experimental model of myofascial trigger points in human muscle after slow eccentric exercise. Acupunct Med 22:2–13

    Article  PubMed  Google Scholar 

  • Jamurtas AZ, Theocharis V, Tofas T, Yfanti C, Paschalis V, Koutedakis Y, Nosaka K (2005) Comparision between leg and arm eccentric exercises of the same relative intensity on indices of muscle damage. Eur J Appl Physiol 95:179–185

    Article  PubMed  Google Scholar 

  • Lau WY, Nosaka K (2011) Effect of vibration treatment on symptoms associated with eccentric exercise-induced muscle damage. Am J Phys Med Rehabil 90:648–657

    Article  PubMed  Google Scholar 

  • Lau WY, Muthalib M, Nosaka K (2013) Visual analog scale and pressure pain threshold for delayed onset muscle soreness assessment. J Musculoskelet Pain 21:320–326

    Article  Google Scholar 

  • Lauritzen F, Paulsen G, Raastad T, Bergersen LB, Owe SG (2009) Gross ultrastructural changes and necrotic fiber segments in elbow flexor muscles after maximal voluntary eccentric action in humans. J Appl Physiol 107:1923–1934

    Article  PubMed  Google Scholar 

  • MacIntyre DL, Reid WD, McKenzie DC (1995) Delayed muscle soreness: the inflammatory response to muscle injury and its clinical implications. Sports Med 20:24–40

    Article  CAS  PubMed  Google Scholar 

  • Malm C, Sjödi B, Sjöberg B, Lenkei R, Renström P, Lundberg IE, Ekblom B (2004) Leuokocytes, cytokines, growth factors and hormnones in human skeletal muscle and blood after uphill or downhill running. J Physiol 556:983–1000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McHugh MP (2003) Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports 13:88–97

    Article  PubMed  Google Scholar 

  • Mense S (1993) Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54:241–289

    Article  CAS  PubMed  Google Scholar 

  • Mense SE, Simons DG (2001) Muscle pain understanding its nature, diagnosis, and treatment. Lippincott Williams & Wilkins, Baltimore, p 29

    Google Scholar 

  • Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164

    Article  CAS  PubMed  Google Scholar 

  • Murase S, Terazawa E, Queme F, Ota H, Matsuda T, Hirate K, Kozaki Y, Katanosaka K, Taguchi T, Urai H, Mizumura K (2010) Bradykinin and nerve growth factor play pivotal roles in muscular mechanical hyperalgesia after exercise (delayed onset muscle soreness). J Neurosci 30:3752–3761

    Article  CAS  PubMed  Google Scholar 

  • Murase S, Terazawa E, Hirate K, Yamanaka H, Kanda H, Noguchi K, Ota H, Queme F, Taguchi T, Mizumura K (2013) Upregulated glial cell line-derived neurotrophic factor through cyclooxygenase-2 activation in the muscle is required for mechanical hyperalgesia after exercise in rats. J Physiol 591:3035–3048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muthalib M, Lee H, Millet GY, Ferrari M, Nosaka K (2012) The repeated-bout effect: influence on biceps brachii oxygenation and myoelectrical activity. J Appl Physiol 110(5):1390–1399

    Article  Google Scholar 

  • Nosaka K, Newton M, Sacco P, Chapman D, Lavender A (2005) Partial protection against muscle damage by eccentric actions at short muscle lengths. Med Sci Sports Exerc 37:746–753

    Article  PubMed  Google Scholar 

  • Ota H, Katanosaka K, Murase S, Kashio M, Tominaga M, Mizumura K (2013) TRPV1 and TRPV4 play pivotal roles in delayed onset muscle soreness. PLoS One. doi:10.1371/journal.pone.0065751

    Google Scholar 

  • Paulsen G, Lauritzen F, Bayer ML, Kalhovde JM, Ugelstad I, Owe SG, Hallén J, Bergersen LH, Raastad T (2009) Subcellular movement and expression of HSP27, αB-crystallin, and HSP70 after two bouts of eccentric exercise in humans. J Appl Physiol 107:570–582

    Article  CAS  PubMed  Google Scholar 

  • Paulsen G, Crameri R, Benestad HB, Fjeld JG, Morkrid L, Hallen J, Raasad T (2010) Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc 42:75–85

    Article  PubMed  Google Scholar 

  • Proske U (2005) Muscle tenderness from exercise: mechanisms? J Physiol 564:1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raastad T, Owe SG, Paulsen G, Enns D, Overgaard K, Crameri R, Kill S, Belcastro A, Bergersen L, Hallen J (2010) Changes in calpain activity, muscle structure and function after eccentric exercise. Med Sci Sports Exerc 42:86–95

    Article  PubMed  Google Scholar 

  • Stacey MJ (1969) Free nerve endings in skeletal muscle of the cat. J Anat 105:231–254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stauber WT, Clarkson PM, Fritz VK, Evan WJ (1990) Extracellular matrix disruption and pain after eccentric muscle action. J Appl Physiol 69:93–99

    Google Scholar 

  • Taguchi T, Sato J, Mizumura K (2005) Augmented mechanical response of muscle thin-fiber sensory receptors recorded from rat muscle-nerve preparations in vitro after eccentric contraction. J Neurophysiol 94:2822–2831

    Article  PubMed  Google Scholar 

  • Tesarz J, Hoheisel U, Wiedenhofer B, Mense S (2011) Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience 194:302–308

    Article  CAS  PubMed  Google Scholar 

  • Umbel JD, Hoffman RL, Dearth DJ, Chleboun GS, Manini TM, Clark BC (2009) Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. Eur J Appl Physiol 107:687–695

    Article  PubMed  Google Scholar 

  • Von Düring M, Andres KH (1990) Topography and ultrastructure of group III and IV nerve terminals of cat’s gastrocnemius-soleus muscle. In: Zenker W, Neuhuber WL (eds) The primary afferent neuron: a survey of recent morpho-functional aspects. Plenum, New York

    Google Scholar 

  • Weerakkody NS, Percival P, Hickey MW, Morgan DL, Greory JE, Canny BJ, Proske U (2003) Effects of local pressure and vibration on muscle pain from eccentric exercise and hypertonic saline. Pain 105:425–435

    Article  CAS  PubMed  Google Scholar 

  • Yu JG, Carlsson L, Thornell LE (2004) Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochem Cell Biol 121:219–227

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Nosaka.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, W.Y., Blazevich, A.J., Newton, M.J. et al. Changes in electrical pain threshold of fascia and muscle after initial and secondary bouts of elbow flexor eccentric exercise. Eur J Appl Physiol 115, 959–968 (2015). https://doi.org/10.1007/s00421-014-3077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3077-5

Keywords

Navigation