Skip to main content
Log in

Stability of daily home-based measures of postural control over an 8-week period in highly functioning older adults

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The focus of this study was to monitor daily objective measures of standing postural control over an 8-week period, recorded in a person’s home, in a population of healthy older adults. Establishing natural patterns of variation in the day-to-day signal, occurring in the relative absence of functional decline or disease, would enable us to determine thresholds for changes in postural control from baseline that could be considered clinically important.

Methods

Eighteen community-dwelling older adults (3 M, 15 F, 72 ± 6 years) participated in a home-based trial where each day they were asked to complete a technology-enabled routine consisting of a short questionnaire, as well as a quiet standing balance trial. Centre of pressure (COP) excursions were calculated over the course of each daily balance trial to generate variables such as postural sway length and mean sway frequency.

Results

The data demonstrated large differences between subjects in centre of pressure measures (coefficients of variation ranging 37–107 %, depending on the variable). Each participant also exhibited variations in their day-to-day trials (e.g. coefficients of variation across 8 weeks ranging ~17–56 %, within person for mean COP distance). Inter- and intra-subject differences were not strongly related to functional tests, suggesting that these variations were not necessarily aberrant movement patterns, but are seemingly representative of natural movement variability.

Conclusions

The idea of applying a group-focused approach at an individual level may result in misclassifying important changes for a particular individual. Early detection of deterioration can only be achieved through the creation of individual trajectories for each person, that are inherently self referential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BBS:

Berg Balance Scale

COP:

Centre of pressure

ICC:

Intra-class coefficient

MDC:

Minimal detectable change

SEM:

Standard error of measurement

TUG:

Timed-up-and-Go

WBB:

Wii balance board

References

  • Bartlett HL, Ting LH, Bingham JT (2014) Accuracy of force and center of pressure measures of the Wii balance board. Gait Posture 39(1):224–228. doi:10.1016/j.gaitpost.2013.07.010

    Article  PubMed  Google Scholar 

  • Bravo G, Potvin L (1991) Estimating the reliability of continuous measures with cronbach’s alpha or the intraclass correlation coefficient: toward the integration of two traditions. J Clin Epidemiol 44(4–5):381–390. doi:10.1016/0895-4356(91)90076-L

    Article  CAS  PubMed  Google Scholar 

  • Cavalheiro G, Almeida M, Pereira A, Andrade A (2009) Study of age-related changes in postural control during quiet standing through Linear Discriminant Analysis. BioMed Eng OnLine 8(1):35

    Article  PubMed Central  PubMed  Google Scholar 

  • Cham R, Perera S, Studenski SA, Bohnen NI (2007) Striatal dopamine denervation and sensory integration for balance in middle-aged and older adults. Gait Posture 26(4):516–525

    Article  PubMed  Google Scholar 

  • Chang JO, Levy SS, Seay SW, Goble DJ (2013a) An alternative to the balance error scoring system: using a low-cost balance board to improve the validity/reliability of sports-related concussion balance testing. Clin J Sport Med (Publish ahead of print)

  • Chang W, Chang W, Lee C, Feng C (2013b) Validity and reliability of Wii fit balance board for the assessment of balance of healthy young adults and the elderly. J Phys Ther Sci 25(10):1251–1253

    Article  PubMed Central  PubMed  Google Scholar 

  • Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M (2010) Validity and reliability of the Nintendo Wii balance board for assessment of standing balance. Gait Posture 31(3):307–310

    Article  PubMed  Google Scholar 

  • Clark RA, McGough R, Paterson K (2011) Reliability of an inexpensive and portable dynamic weight bearing asymmetry assessment system incorporating dual Nintendo Wii balance boards. Gait Posture 34(2):288–291

    Article  PubMed  Google Scholar 

  • de Vet HCW, Terluin B, Knol DL, Roorda LD, Mokkink LB, Ostelo RWJG, Hendriks EJM, Bouter LM, Terwee CB (2010) Three ways to quantify uncertainty in individually applied “minimally important change” values. J Clin Epidemiol 63(1):37–45

    Article  PubMed  Google Scholar 

  • Doheny EP, Greene BR, Foran T, Cunningham C, Fan CW, Kenny RA (2012) Diurnal variations in the outcomes of instrumented gait and quiet standing balance assessments and their association with falls history. Physiol Meas 33(3):361

    Article  PubMed  Google Scholar 

  • Doyle RJ, Hsiao-Wecksler ET, Ragan BG, Rosengren KS (2007) Generalizability of center of pressure measures of quiet standing. Gait Posture 25(2):166–171

    Article  PubMed  Google Scholar 

  • Dutta A, Kumar R, Malhotra S, Chugh S, Banerjee A, Dutta A (2013) A low-cost point-of-care testing system for psychomotor symptoms of depression affecting standing balance: a preliminary study in India. Depress Res Treat 2013:8. doi:10.1155/2013/640861

    Google Scholar 

  • Flansbjer U-B, Blom J, Brogardh C (2012) The reproducibility of berg balance scale and the single-leg stance in chronic stroke and the relationship between the two tests. PM&R 4:165–170

    Article  Google Scholar 

  • Forte R, Boreham CG, De Vito G, Ditroilo M, Pesce C (2014) Measures of static postural control moderate the association of strength and power with functional dynamic balance. Aging Clin Exp Res 1–9. doi:10.1007/s40520-014-0216-0

  • Fritz S, Lusardi M (2009) White paper: “walking speed: the sixth vital sign”. J Geriatr Phys Ther 32(2):46–49

    Article  PubMed  Google Scholar 

  • Gao X, Chen H, Schwarzschild MA, Logroscino G, Ascherio A (2008) Perceived imbalance and risk of Parkinson’s disease. Mov Disord 23(4):613–616. doi:10.1002/mds.21919

    Article  PubMed Central  PubMed  Google Scholar 

  • Geh CLM, Beauchamp MR, Crocker PRE, Carpenter MG (2011) Assessed and distressed: white-coat effects on clinical balance performance. J Psychosom Res 70(1):45–51

    Article  PubMed  Google Scholar 

  • Goldberger AL (2001) Heartbeats, hormones, and health: is variability the spice of life? Am J Respir Crit Care Med 163(6):1289–1290

    Article  CAS  PubMed  Google Scholar 

  • Hsu W-L, Lin K-H, Yang R-S, Cheng C-H (2014) Use of motor abundance in old adults in the regulation of a narrow-based stance. Eur J Appl Physiol 114(2):261–271. doi:10.1007/s00421-013-2768-7

    Article  PubMed  Google Scholar 

  • Hubbard R, Eeles E, Rockwood M, Fallah N, Ross E, Mitnitski A, Rockwood K (2011) Assessing balance and mobility to track illness and recovery in older inpatients. J Gen Intern Med 26(12):1471–1478. doi:10.1007/s11606-011-1821-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaye JA, Maxwell SA, Mattek N, Hayes TL, Dodge H, Pavel M, Jimison HB, Wild K, Boise L, Zitzelberger TA (2011) Intelligent systems for assessing aging changes: home-based, unobtrusive, and continuous assessment of aging. J Gerontol Ser B Psychol Sci Soc Sci 66B(suppl 1):i180–i190. doi:10.1093/geronb/gbq095

    Article  Google Scholar 

  • Krause KE, McIntosh EI, Vallis LA (2012) Sarcopenia and predictors of the fat free mass index in community-dwelling and assisted-living older men and women. Gait Posture 35(2):180–185

    Article  PubMed  Google Scholar 

  • Kurz I, Oddsson L, Melzer I (2013) Characteristics of balance control in older persons who fall with injury—a prospective study. J electromyogr kinesiol off J Int Soc Electrophysiol Kinesiol 23(4):814–819

    Article  Google Scholar 

  • Kyvelidou A, Harbourne RT, Stuberg WA, Sun J, Stergiou N (2009) Reliability of center of pressure measures for assessing the development of sitting postural control. Arch Phys Med Rehabil 90(7):1176–1184

    Article  PubMed Central  PubMed  Google Scholar 

  • Lafond D, Hn Corriveau, HÃbert R, Fo Prince (2004) Intrasession reliability of center of pressure measures of postural steadiness in healthy elderly people. Arch Phys Med Rehabil 85(6):896–901

    Article  PubMed  Google Scholar 

  • Lin D, Seol H, Nussbaum MA, Madigan ML (2008) Reliability of COP-based postural sway measures and age-related differences. Gait Posture 28(2):337–342

    Article  PubMed  Google Scholar 

  • Makizako H, Shimada H, Doi T, Park H, Yoshida D, Uemura K, Tsutsumimoto K, Liu-Ambrose T, Suzuki T (2013) Poor balance and lower gray matter volume predict falls in older adults with mild cognitive impairment. BMC Neurol 13(1):102

    Article  PubMed Central  PubMed  Google Scholar 

  • McGinnis P, Wainwright S, Hack L, Nixon-Cave K, Michlovitz S (2010) Use of a Delphi panel to establish consensus for recommended uses of selected balance assessment approaches. Physiother Theory Pract 26:358–373

    Article  PubMed  Google Scholar 

  • Muir S, Berg K, Chesworth B, Klar N, Speechley M (2010) Quantifying the magnitude of risk for balance impairment on falls in community-dwelling older adults: a systematic review and meta-analysis. J Clin Epidemiol 63(4):389–406

    Article  PubMed  Google Scholar 

  • Pagnacco G, Wright CHG, Oggero E, Bundle MW, Carrick FR (2013) On “Comparison of a laboratory grade force platform with a Nintendo Wii balance board on measurement of postural control in single-leg stance balance tasks” by Huurnink, A, et al. [J. Biomech 46(7) (2013) 1392]: are the conclusions stated by the authors justified? J of Biomech 47(3). doi:10.1016/j.jbiomech.2013.06.039

  • Pajala S, Era P, Koskenvuo M, Kaprio J, Törmäkangas T, Rantanen T (2008) Force platform balance measures as predictors of indoor and outdoor falls in community-dwelling women aged 63–76 years. Theh J of Gerontol Ser A Biol Sci Med Sci 63(2):171–178

    Article  Google Scholar 

  • Pardasaney P, Latham N, Jette A, Wagenaar R, Ni P, Slavin M, Bean J (2012) Sensitivity to change and responsiveness of four balance measures for community-dwelling older adults. Phys Ther 92:388–397

    Article  PubMed Central  PubMed  Google Scholar 

  • Piirtola M, Era P (2006) Force platform measurements as predictors of falls among older people: a review. Gerontology 52:1–16

    Article  PubMed  Google Scholar 

  • Pollock C, Eng J, Garland S (2011) Clinical measurement of walking balance in people post stroke: a systematic review. Clin Rehabil 25:693–708

    Article  PubMed  Google Scholar 

  • Prieto TE, Myklebust JB, Hoffman RG, Lovett EG, Myklebust BM (1996) Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng 43(9):956–966

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe SJ, Shults J (2008) GEEQBOX: a MATLAB toolbox for generalized estimating equations and quasi-least squares. J Stat Soft 25(14):1–14

    Google Scholar 

  • Ruhe A, Fejer R, Walker B (2010) The test–retest reliability of centre of pressure measures in bipedal static task conditions—a systematic review of the literature. Gait Posture 32(4):436–445

    Article  PubMed  Google Scholar 

  • Schoene D, Wu SMS, Mikolaizak AS, Menant JC, Smith ST, Delbaere K, Lord SR (2013) Discriminative ability and predictive validity of the Timed up and Go test in identifying older people who fall: systematic review and meta-analysis. J Am Geriatr Soc 61(2):202–208. doi:10.1111/jgs.12106

    Article  PubMed  Google Scholar 

  • Shimada H, Tiedemann A, Lord SR, Suzukawa M, Makizako H, Kobayashi K, Suzuki T (2011) Physical factors underlying the association between lower walking performance and falls in older people: a structural equation model. Arch Gerontol Geriatr 53(2):131–134

    Article  PubMed  Google Scholar 

  • Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428

    Article  CAS  PubMed  Google Scholar 

  • Sibley K, Straus S, Inness E, Salbach N, Jaglal S (2013) Clinical balance assessment: perceptions of commonly-used standardized measures and current practices among physiotherapists in Ontario, Canada. Implement Sci 8(1):33

    Article  PubMed Central  PubMed  Google Scholar 

  • Stergiou N, Harbourne RT, Cavanaugh JT (2006) Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J Neurol Phys Ther 30(3):120–129

    Article  PubMed  Google Scholar 

  • Suttanon P, Hill KD, Said CM, LoGiudice D, Lautenschlager NT, Dodd KJ (2012) Balance and mobility dysfunction and falls risk in older people with mild to moderate Alzheimer disease. Am J Phys Med Rehabil 91(1):12–23. doi:10.1097/PHM.1090b1013e31823caeea

    Article  PubMed  Google Scholar 

  • Telenius E, Engedal K, Bergland A (2013) Physical performance and quality of life of nursing-home residents with mild and moderate dementia. Int J Environ Res Public Health 10(12):6672–6686

    Article  PubMed Central  PubMed  Google Scholar 

  • Terwee CB, Roorda LD, Knol DL, De Boer MR, De Vet HCW (2009) Linking measurement error to minimal important change of patient-reported outcomes. J Clin Epidemiol 62(10):1062–1067

    Article  PubMed  Google Scholar 

  • Terwee CB, Roorda LD, Dekker J, Bierma-Zeinstra SM, Peat G, Jordan KP, Croft P, de Vet HCW (2010) Mind the MIC: large variation among populations and methods. J Clin Epidemiol 63(5):524–534

    Article  PubMed  Google Scholar 

  • Tracy B (2007) Force control is impaired in the ankle plantarflexors of elderly adults. Eur J Appl Physiol 101(5):629–636. doi:10.1007/s00421-007-0538-0

    Article  PubMed  Google Scholar 

  • Tsang WN, Lam NY, Lau KL, Leung HH, Tsang CS, Lu X (2013) The effects of aging on postural control and selective attention when stepping down while performing a concurrent auditory response task. Eur J Appl Physiol 113(12):3021–3026. doi:10.1007/s00421-013-2740-6

    Article  PubMed  Google Scholar 

  • Verdecchia P, Staessen JA, White WB, Imai Y, O’Brien ET (2002) Properly defining white coat hypertension. Eur Heart J 23(2):106–109

    Article  CAS  PubMed  Google Scholar 

  • Weir JP (2005) Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19(1):231–240

    PubMed  Google Scholar 

  • Winter D, Prince F, Frank J, Powell C, Zabjek K (1996) Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol 75:2334–2343

    CAS  PubMed  Google Scholar 

  • Wright A, Hannon J, Hegedus EJ, Kavchak AE (2012) Clinimetrics corner: a closer look at the minimal clinically important difference (MCID). J Man Manip Ther 20(3):160–166

    Article  PubMed Central  PubMed  Google Scholar 

  • Young W, Ferguson S, Brault S, Craig C (2011) Assessing and training standing balance in older adults: a novel approach using the ‘Nintendo Wii’ Balance Board. Gait Posture 33(2):303–305. doi:10.1016/j.gaitpost.2010.10.089

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was completed as part of a wider programme of research within the TRIL Centre (Technology Research for Independent Living). The TRIL Centre is a multidisciplinary research centre, bringing together researchers from UCD, TCD, NUIG & Intel, funded by Intel, GE and IDA Ireland.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise McGrath.

Additional information

Communicated by Dick F. Stegeman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGrath, D., Greene, B.R., Sheehan, K. et al. Stability of daily home-based measures of postural control over an 8-week period in highly functioning older adults. Eur J Appl Physiol 115, 437–449 (2015). https://doi.org/10.1007/s00421-014-3034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3034-3

Keywords

Navigation