Skip to main content
Log in

The application of maximal heart rate predictive equations in hypoxic conditions

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Peak heart rate (HRpeak) is a common tool used in exercise prescription for groups in which maximal exercise intensity is contraindicated; however, the application of this method in normobaric hypoxia is unknown. Therefore, this study investigated the response of HRpeak and the application of predictive HRpeak equations to prescribe exercise intensity in acute normobaric hypoxia. Results were used to examine whether age-derived HRpeak predictive equations are valid in hypoxic conditions.

Methods

Fifteen untrained (eight men) volunteers (age 22 ± 2 years; peak rate of oxygen consumption 46.3 ± 7.0 ml kg−1 min−1) completed incremental cycle ergometer tests (randomised order) to measure HRpeak at sea-level (SL (ambient inspiratory oxygen fraction (FIO2) 0.209)) and four normobaric hypoxic conditions FIO2: 0.185, 0.165, 0.142, 0.125 (≈1,000–4,000 m).

Results

HRpeak was similar across all conditions (SL, 182 ± 13; 0.185, 178 ± 11; 0.165, 177 ± 9; 0.142, 178 ± 9; 0.125, 175 ± 10 b min−1) despite a reduction in oxygen saturation with increasing hypoxia (SL, 95 ± 5; 0.185, 95 ± 2; 0.165, 92 ± 2; 0.142, 88 ± 3; 0.125, 82 ± 4 %; P ≤ 0.05). The HRpeak was overestimated by all equations compared to the measured value (P < 0.05). Four equations overestimated HRpeak in all conditions (P < 0.01); two in four conditions (0.185, 0.165, 0.142, 0.125; P < 0.01); and two in three conditions (0.165, 0.142, 0.125; P < 0.01).

Conclusion

The overestimation of HRpeak by commonly used age-derived predictive equations in normobaric hypoxic conditions suggests that despite possible contraindications researchers should directly measure HRpeak whenever possible if it is to be used to prescribe exercise intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

FIO2 :

Ambient inspiratory oxygen fraction

HRpeak :

Peak heart rate

O2 :

Oxygen

PHRpeak :

Predicted peak heart rate

RH:

Relative humidity

RPE:

Rating of perceived exertion

SL:

Sea level

SPO2 :

Arterial oxygen saturation

t amb :

Ambient temperature

v :

Velocity

\(\dot{V}_{E}\) :

Minute ventilation

\(\dot{V}\rm{O_{2}}\) :

Oxygen uptake

\(\dot{V}\rm{O_{2peak} }\) :

Peak rate of oxygen consumption

\(\dot{W}_{peak}\) :

Peak power output

Ω2 :

Omega squared

References

  • Aliverti A, Kayser B, Mauro AL, Quaranta M, Pompilio P, Dellaca RL et al (2011) Respiratory and leg muscles perceived exertion during exercise at altitude. Respir Physiol Neurobiol 177(2):162–168

    Article  CAS  PubMed  Google Scholar 

  • Amann M, Subudhi AW, Foster C (2006) Predictive validity of ventilatory and lactate thresholds for cycling time trial performance. Scand J Med Sci Sports 16(1):27–34

    Article  PubMed  Google Scholar 

  • Bailey DM, Davies B, Romer L, Castell L, Newsholme E, Gandy G (1998) Implications of moderate altitude training for sea-level endurance in elite distance runners. Eur J Appl Physiol 78(4):360–368

    Article  CAS  Google Scholar 

  • Benoit H, Busso T, Castells J, Geyssant A, Denis C (2003) Decrease in peak heart rate with acute hypoxia in relation to sea level VO2max. Eur J Appl Physiol 90(5–6):514–519

    Article  PubMed  Google Scholar 

  • Bentley DJ, McNaughton LR (2003) Comparison Of Wpeak, VO2peak and the ventilation threshold from two different incremental exercise tests: relationship to endurance performance. J Sci Med Sport 6(4):422–435

    Article  CAS  PubMed  Google Scholar 

  • Borg GAV (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    Article  CAS  PubMed  Google Scholar 

  • Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ (1983) Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 55(5):1558–1564

    CAS  PubMed  Google Scholar 

  • Burtscher M, Nachbauer W, Baumgartl P, Philadelphy M (1996) Benefits of training at moderate altitude versus sea level training in amateur runners. Eur J Appl Physiol 74(6):558–563

    Article  CAS  Google Scholar 

  • Cerretelli P (1980) Gas exchange at high altitude. In: West JB (ed) Pulmonary gas exchange, vol 1. Academic Press, New York, pp 97–147

    Google Scholar 

  • Christensen EH, Forbes WH (1937) Der kreislauf in grossen höhen. Scand Arch Physiol 76:75–89

    Article  Google Scholar 

  • Cohen J (1992) A power primer. Psychol Bull 112(1):155–159

    Article  CAS  PubMed  Google Scholar 

  • Field A (2005) Discovering statistics using SPSS (2nd Ed.) (pp. 294). London: Sage

  • Fox SM, Naughton JP, Haskell WL (1971) Physical activity and the prevention of coronary heart disease. Ann Clin Res 3(6):404–432

    PubMed  Google Scholar 

  • Franckowiak SC, Dobrosielski DA, Reilley SM, Walston JD, Andersen RE (2011) Maximal heart rate prediction in adults that are overweight or obese. J Strength Cond Res 25(5):1407–1412

    Article  PubMed Central  PubMed  Google Scholar 

  • Friedmann B, Frese F, Menold E, Bartsch P (2005) Individual variation in the reduction of heart rate and performance at lactate thresholds in acute normobaric hypoxia. Int J Sports Med 26(7):531–536

    Article  CAS  PubMed  Google Scholar 

  • Grataloup O, Busso T, Castells J, Denis C, Benoit H (2007) Evidence of decrease in peak heart rate in acute hypoxia: effect of exercise-induced arterial hypoxemia. Int J Sports Med 28(3):181–185

    Article  CAS  PubMed  Google Scholar 

  • Haufe S, Wiesner S, Engeli S, Luft FC, Jordan J (2008) Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Med Sci Sports Exerc 40(11):1939–1944

    Article  PubMed  Google Scholar 

  • Jones NL (1988) Clinical exercise testing (3rd edn., pp 303): WB Saunders, US

  • Jones NL, Makrides L, Hitchcock C, Chypchar T, Mccartney N (1985) Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis 131(5):700–708

    CAS  PubMed  Google Scholar 

  • Lawler J, Powers SK, Thompson D (1988) Linear relationship between VO2 max and VO2 max decrement during exposure to acute hypoxia. J Appl Physiol 64(4):1486–1492

    CAS  PubMed  Google Scholar 

  • Lundby C, Araoz M, van Hall G (2001) Peak heart rate decreases with increasing severity of acute hypoxia. High Alt Med Biol 2(3):369–376

    Article  CAS  PubMed  Google Scholar 

  • Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP (2010) Combining hypoxic methods for peak performance. Sport Med 40(1):1–25

    Article  Google Scholar 

  • Mollard P, Woorons X, Letournel M, Cornolo J, Lamberto C, Beaudry M et al (2007) Role of maximal heart rate and arterial O2 saturation on the decrement of VO2 max in moderate acute hypoxia in trained and untrained men. Int J Sports Med 28(3):186–192

    Article  CAS  PubMed  Google Scholar 

  • Netzer NC, Chytra R, Kupper T (2008) Low intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia. Sleep Breath 12(2):129–134

    Article  PubMed Central  PubMed  Google Scholar 

  • Perri MG, Anton SD, Durning PE, Ketterson TU, Sydeman SJ, Berlant NE et al (2002) Adherence to exercise prescriptions: effects of prescribing moderate versus higher levels of intensity and frequency. Health Psychol 21(5):452–458

    Article  PubMed  Google Scholar 

  • Posner JD, McCully KK, Landsberg LA, Sands LP, Tycenski P, Hoffman MT et al (1995) Physical determinants of independence in mature women. Arch Phys Med Rehabil 76:373–380

    Article  CAS  PubMed  Google Scholar 

  • Pugh LGCE (1964) Cardiac output in muscular exercise at 5800 m (19,000 ft). J Appl Physiol 19:441–447

    Google Scholar 

  • Quintero P, Milagro FI, Campion J, Martinez JA (2010) Impact of oxygen availability on body weight management. Med Hypotheses 74(5):901–907

    Article  CAS  PubMed  Google Scholar 

  • Ricard RM, Leger L, Massicotte D (1990) Validity of the “220-age formula” to predict maximal heart rate. Med Sci Sports Exerc 22(2):S96

    Article  Google Scholar 

  • Richalet JP, Larmignat P, Rathat C, Keromes A, Baud P, Lhoste F (1988) Decreased cardiac response to isoproterenol infusion in acute and chronic hypoxia. J Appl Physiol 65(5):1957–1961

    CAS  PubMed  Google Scholar 

  • Roach RC, Calbet JA, Olsen NV, Poulsen TD, Vissing SF, Saltin B (1996) Peak exercise heart rate in humans at high altitude. J Physiol 491:P60–P61

    Google Scholar 

  • Robergs RA, Landwehr R (2002) The surprising history of the “HRmax = 220-age” equation. J Exerc Physiol Online 5(2):1–10

  • Roche F, Reynaud C, Pichot V, Duverney D, Costes F, Garet M et al (2003) Effect of acute hypoxia on QT rate dependence and corrected QT interval in healthy subjects. Am J Cardiol 91(7):916–919

    Article  PubMed  Google Scholar 

  • Rosenthal R, Rosnow RL, Rubin DB (2000) Contrasts and effect sizes in behavioural research: a correlational approach. (pp 32). Cambridge University Press, Cambridge

  • Shephard RJ, Vandewalle H, Gil V, Bouhlel E, Monod H (1992) Respiratory, muscular, and overall perceptions of effort: the influence of hypoxia and muscle mass. Med Sci Sports Exerc 24(5):556–567

    Article  CAS  PubMed  Google Scholar 

  • Stenberg J, Ekblom B, Messin R (1966) Hemodynamic response to work at simulated altitude, 4,000 m. J Appl Physiol 21(5):1589–1594

    CAS  PubMed  Google Scholar 

  • Tanaka H, Fukumoto S, Osaka Y, Ogawa S, Yamaguchi H, Miyamoto H (1991) Distinctive effects of three different modes of exercise on oxygen uptake, heart rate and blood lactate and pyruvate. Int J Sports Med 12(5):433–438

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal heart rate revisited. J Am Coll Cardiol 37(1):153–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

There were no external funding sources used in the preparation of this article. C. A Gallagher is currently receiving financial support in the form of a bursary allowance from the University of Chichester.

Conflict of interest

There are no conflicts of interests concerning the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Myers.

Additional information

Communicated by Massimo Pagani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallagher, C.A., Willems, M.E.T., Lewis, M.P. et al. The application of maximal heart rate predictive equations in hypoxic conditions. Eur J Appl Physiol 115, 277–284 (2015). https://doi.org/10.1007/s00421-014-3007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3007-6

Keywords

Navigation