Skip to main content
Log in

Maximal oxygen consumption in healthy humans: theories and facts

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 11 January 2015

Abstract

This article reviews the concept of maximal oxygen consumption (\(\dot{V}\hbox{O}_{2\text{max} }\)) from the perspective of multifactorial models of \(\dot{V}\hbox{O}_{2\text{max} }\) limitation. First, I discuss procedural aspects of \(\dot{V}\hbox{O}_{2\text{max} }\) measurement: the implications of ramp protocols are analysed within the theoretical work of Morton. Then I analyse the descriptive physiology of \(\dot{V}\hbox{O}_{2\text{max} }\), evidencing the path that led to the view of monofactorial cardiovascular or muscular \(\dot{V}\hbox{O}_{2\text{max} }\) limitation. Multifactorial models, generated by the theoretical work of di Prampero and Wagner around the oxygen conductance equation, represented a radical change of perspective. These models are presented in detail and criticized with respect to the ensuing experimental work. A synthesis between them is proposed, demonstrating how much these models coincide and converge on the same conclusions. Finally, I discuss the cases of hypoxia and bed rest, the former as an example of the pervasive effects of the shape of the oxygen equilibrium curve, the latter as a neat example of adaptive changes concerning the entire respiratory system. The conclusion is that the concept of cardiovascular \(\dot{V}\hbox{O}_{2\text{max} }\) limitation is reinforced by multifactorial models, since cardiovascular oxygen transport provides most of the \(\dot{V}\hbox{O}_{2\text{max} }\) limitation, at least in normoxia. However, the same models show that the role of peripheral resistances is significant and cannot be neglected. The role of peripheral factors is greater the smaller is the active muscle mass. In hypoxia, the intervention of lung resistances as limiting factors restricts the role played by cardiovascular and peripheral factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a :

Angular coefficient of Whipp’s model of a ramp test

b :

Y-intercept of Whipp’s model of a ramp test

\({\it{C}}_{\rm a}{\text {O}}_{2}\) :

Arterial oxygen concentration

\(C_{\overline{\text{v}}}{\text{O}}_{2}\) :

Mixed venous oxygen concentration

Dempsey effect:

Desaturation of arterial blood at maximal exercise in subjects with high \(\dot{V}\hbox{O}_{2\text{max} }\)

D LO2 :

Lung diffusion capacity for oxygen

D tO2 :

Tissue diffusion capacity for oxygen

F :

Fraction

F IO2 :

Inspired oxygen fraction

F L :

Pulmonary fraction of oxygen flow limitation

F m :

Mitochondrial fraction of oxygen flow limitation

F p :

Peripheral fraction of oxygen flow limitation

F Q :

Cardiovascular fraction of oxygen flow limitation

F t :

Tissue fraction of oxygen flow limitation

F V :

Ventilatory fraction of oxygen flow limitation

G :

Conductance

G L :

Pulmonary conductance of oxygen flow

G m :

Mitochondrial conductance of oxygen flow

G p :

Peripheral conductance of oxygen flow

G Q :

Cardiovascular conductance of oxygen flow

G T :

Total conductance of oxygen flow

G t :

Tissue conductance of oxygen flow

G V :

Ventilatory conductance of oxygen flow

k :

Velocity constant

K p :

Dimensionless constant relating \(P_{\overline{\text{v}}}{\text{O}}_{2}\) and \(P_{\overline{\text{c}}} {\text{O}}_{2}\)

K W :

Wagner’s constant (slope of diffusion line)

P AO2 :

Mean alveolar oxygen partial pressure

P aO2 :

Arterial oxygen partial pressure

P b :

Barometric pressure

\(P_{\overline{\text{c}}}{\text{O}}_{2}\) :

Mean capillary oxygen partial pressure

P IO2 :

Inspired oxygen partial pressure

P mO2 :

Mitochondrial oxygen partial pressure

\({\it{P}}_{\overline{\text{v}}}{\text{O}}_2\) :

Mixed venous oxygen partial pressure

\(\dot{Q}\) :

Cardiac output

\(\dot{Q}_{\text{max} }\) :

Maximal cardiac output

\({\dot{Q}}_{\rm a}{\text {O}}_{2}\) :

Oxygen flow in arterial blood (systemic oxygen delivery)

R :

Resistance

R L :

Pulmonary resistance to oxygen flow

R m :

Mitochondrial resistance to oxygen flow

R p :

Peripheral resistance to oxygen flow

R Q :

Cardiovascular resistance to oxygen flow

R T :

Total resistance to oxygen flow

R t :

Tissue resistance to oxygen flow

R V :

Ventilatory resistance to oxygen flow

S :

Ramp slope

S aO2 :

Arterial oxygen saturation

STPD:

Standard temperature and pressure dry

t :

Time

T :

Exhaustion time in a ramp test

T S :

Step duration in a ramp test

\(\dot{V}\) :

Gas flow

\(\dot{V}_{A}\) :

Alveolar ventilation

\(\dot{V}_{\text{A}} /\dot{Q}\) :

Ventilation/perfusion ratio

V m :

Mitochondrial volume

v :

Speed

\(\dot{V}\hbox{O}_{2}\) :

Oxygen uptake

\(\dot{V}\hbox{O}_{2\text{max} }\) :

Maximal oxygen consumption

\(\dot{w}\) :

Mechanical power

\(W^{\prime}\) :

Work carried out above the critical power in a ramp test

\(\dot{w}_{\text{cr}}\) :

Critical power

\(\dot{w}_{\text{max} }\) :

Maximal mechanical aerobic power

\(\dot{w}_{\text{peak}}\) :

Peak power of a ramp test

β b :

Oxygen transfer coefficient for blood

β g :

Oxygen transfer coefficient for air

Δ:

Before a variable, designates a change in the value of that variable

References

  • Adami A, Sivieri A, Moia C, Perini R, Ferretti G (2013) Effects of step duration in incremental ramp protocols on peak power and maximal oxygen consumption. Eur J Appl Physiol 113:2647–2653

    PubMed  Google Scholar 

  • Aghemo P, Piñera-Limas F, Sassi G (1971) Maximal aerobic power in primitive Indians. Int Z angew Physiol 29:337–342

    CAS  PubMed  Google Scholar 

  • Amann M, Subudhi A, Foster C (2004) Influence of testing protocol on ventilatory thresholds and cycling performance. Med Sci Sports Exerc 36:613–622

    PubMed  Google Scholar 

  • Andersen P, Henriksson J (1977) Capillary supply of the quadriceps skeletal muscle of man: adaptive response to exercise. J Physiol 270:677–690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen P, Saltin B (1985) Maximal perfusion of skeletal muscle in man. J Physiol 366:233–249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen KL, Bolstad A, Loyning A, Irving L (1960) Physical fitness of arctic Indians. J Appl Physiol 15:645–648

    CAS  PubMed  Google Scholar 

  • Armstrong RB, Delp MD, Goljan MF, Laughlin MH (1987) Distribution of blood flow in muscles of miniature swine during exercise. J Appl Physiol 62:1285–1298

    CAS  PubMed  Google Scholar 

  • Aspenes ST, Nilsen TI, Skaug EA, Bertheussen GF, Ellingsen Ø, Vatten L, Wisløff U (2011) Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med Sci Sports Exerc 43:1465–1473

    PubMed  Google Scholar 

  • Astorino TA, Allen RP, Roberson DW, Jurancich M (2012) Effect of high-intensity interval training on cardiovascular function, \( \dot{V}\hbox{O}_{2\text{max} } \), and muscular force. J Strength Cond Res 26:398–407

    Google Scholar 

  • Åstrand PO (1955) New records in human power. Nature 176:922–923

    Google Scholar 

  • Åstrand PO (1956) Human physical fitness with special reference to sex and age. Physiol Rev 36:307–335

    PubMed  Google Scholar 

  • Åstrand I (1960) Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand Suppl 169:1–92

    Google Scholar 

  • Åstrand PO, Saltin B (1961) Maximal oxygen uptake and heart rate in various types of muscular activity. J Appl Physiol 16:977–981

    PubMed  Google Scholar 

  • Åstrand PO, Rodahl K, Dahl HA, Strømme SB (2003) Textbook of work physiology. Physiological bases of exercise, 4th ed., Human Kinetics, Champaign

  • Audran M, Gareau R, Matecki S, Durand F, Chenard C, Sicart M, Marion B, Bressolle F (1999) Effects of erythropoietin administration in training athletes and possible indirect detection in doping control. Med Sci Sports Exerc 31:639–645

    CAS  PubMed  Google Scholar 

  • Bailey SJ, Romer LM, Kelly J, Wilkerson DP, DiMenna FJ, Jones AM (2010) Inspiratory muscle training enhances pulmonary O2 uptake kinetics and high-intensity exercise tolerance in humans. J Appl Physiol 109:457–468

    PubMed  Google Scholar 

  • Bannister RG, Cunningham DJC (1954) The effects on the respiration and performance during exercise of adding oxygen to the inspired air. J Physiol 125:118–137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baumgartner WA Jr, Jaryszak EM, Peterson AJ, Presson RG Jr, Wagner WW Jr (2003) Heterogeneous capillary recruitment among adjoining alveoli. J Appl Physiol 95:469–476

    PubMed  Google Scholar 

  • Benoit H, Busso T, Castells J, Denis C, Geyssant A (1995) Influence of hypoxic ventilatory response on arterial O2 saturation during maximal exercise in acute hypoxia. Eur J Appl Physiol 72:101–105

    CAS  Google Scholar 

  • Berg HE, Dudley GA, Hather B, Tesch PA (1993) Work capacity and metabolic and morphologic characteristics of the human quadriceps muscle in response to unloading. Clin Physiol 13:337–347

    CAS  PubMed  Google Scholar 

  • Bergh U, Ekblom B (1979) Physical performance and peak aerobic power at different body temperatures. J Appl Physiol 46:885–889

    CAS  PubMed  Google Scholar 

  • Bergh U, Kanstrup IL, Ekblom B (1976) Maximal oxygen uptake during exercise with various combinations of arm and leg work. J Appl Physiol 41:191–196

    CAS  PubMed  Google Scholar 

  • Berglund B, Ekblom B (1991) Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men. J Intern Med 229:125–130

    CAS  PubMed  Google Scholar 

  • Berglund B, Hemmingsson P (1987) Effect of reinfusion of autologous blood in cross-country skiers. Int J Sports Med 8:231–233

    CAS  PubMed  Google Scholar 

  • Billat V, Lepretre PM, Heugas AM, Laurence MH, Salim D, Koralsztein JP (2003) Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc 35:297–304

    PubMed  Google Scholar 

  • Blomqvist CG, Saltin B (1983) Cardiovascular adaptations to physical training. Annu Rev Physiol 45:169–189

    CAS  PubMed  Google Scholar 

  • Booth FW (1982) Effect of limb immobilization on skeletal muscle. J Appl Physiol 52:1113–1118

    CAS  PubMed  Google Scholar 

  • Booth FW, Roberts CK, Laye MJ (2012) Lack of exercise is a major cause of chronic diseases. Compr Physiol 2:1143–1211

    PubMed Central  PubMed  Google Scholar 

  • Bosch AN, Goslin BR, Noakes TD, Dennis SC (1990) Physiological differences between black and white runners during a treadmill marathon. Eur J Appl Physiol 61:68–72

    CAS  Google Scholar 

  • Bouchard C (2012) Genomic predictors of trainability. Exp Physiol 97:347–352

    CAS  PubMed  Google Scholar 

  • Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, Pérusse L, Leon AS, Rao DC (1999) Familial aggregation of \( \dot{V}\hbox{O}_{2\text{max} } \) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol 87:1003–1008

    CAS  PubMed  Google Scholar 

  • Bouchard C, Rankinen T, Timmons JA (2011a) Genomics and genetics in the biology of adaptation to exercise. Compr Physiol 1:1603–1648

    PubMed Central  PubMed  Google Scholar 

  • Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS, Sung YJ, Rao DC, Rankinen T (2011b) Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J Appl Physiol 110:1160–1170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breil FA, Weber SN, Koller S, Hoppeler H, Vogt M (2010) Block training periodization in alpine skiing: effects of 11-day HIT on VO2max and performance. Eur J Appl Physiol 109:1077–1086

    PubMed  Google Scholar 

  • Bringard A, Pogliaghi S, Adami A, De Roia G, Lador F, Lucini D, Pizzinelli P, Capelli C, Ferretti G (2010) Cardiovascular determinants of maximal oxygen consumption in upright and supine posture at the end of prolonged bed rest in humans. Respir Physiol Neurobiol 172:53–62

    PubMed  Google Scholar 

  • Brink-Elfegoun T, Kaijser L, Gustafsson T, Ekblom B (2007) Maximal oxygen uptake is not limited by a central nervous system governor. J Appl Physiol 102:781–786

    CAS  PubMed  Google Scholar 

  • Brodal P, Ingjer F, Hermansen L (1977) Capillary supply of skeletal muscle fibers in untrained and endurance-trained men. Am J Physiol Heart Circ Physiol 232:H705–H712

    CAS  Google Scholar 

  • Brooks GA (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17:22–31

    CAS  PubMed  Google Scholar 

  • Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ (1983) Optimizing the exercise protocol for cardio-pulmonary assessment. J Appl Physiol 55:1558–1564

    CAS  PubMed  Google Scholar 

  • Buick FJ, Gledhill N, Froese AB, Spriet LL, Meyers EC (1980) Effect of induced erythrocythemia on aerobic work capacity. J Appl Physiol 48:636–642

    CAS  PubMed  Google Scholar 

  • Burnley M, Roberts C, Thatcher R, Doust JH (2006) Influence of blood donation on O2 uptake on-kinetics, peak O2 uptake and time to exhaustion during severe-intensity exercise. Exp Physiol 91:499–509

    PubMed  Google Scholar 

  • Burtscher M, Nachbauer W, Wilber R (2011) The upper limit of aerobic power in humans. Eur J Appl Physiol 111:2625–2628

    PubMed  Google Scholar 

  • Buskirk ER, Hodgson JL (1987) Age and aerobic power: the rate of change in men and women. Fed Proc 46:1824–1829

    CAS  PubMed  Google Scholar 

  • Calbet JAL, Jensen-Urstad M, Van Hall G, Holmberg HC, Rosdahl H, Saltin B (2004) Maximal muscular vascular conductances during whole body upright exercise in humans. J Physiol 558:319–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calbet JA, Gonzalez-Alonso J, Helge JW, Søndergaard H, Munch-Andersen T, Boushel R, Saltin B (2007) Cardiac output and leg and arm blood flow during incremental exercise to exhaustion on the cycle ergometer. J Appl Physiol 103:969–978

    PubMed  Google Scholar 

  • Calbet JAL, Rådegran G, Boushel R, Saltin (2009) On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. J Physiol 587:477–490

  • Camus G, Atchou G, Bruckner JC, Giezendanner D, di Prampero PE (1988) Slow upward drift of \( \dot{V}\hbox{O}_{2} \) during constant-load cycling in untrained subjects. Eur J Appl Physiol 58:197–202

    CAS  Google Scholar 

  • Capelli C, di Prampero PE (1995) Effects of altitude on top speeds during 1 h unaccompanied cycling. Eur J Appl Physiol 71:469–471

    CAS  Google Scholar 

  • Capelli C, Schena F, Zamparo P, Dal Monte A, Faina M, di Prampero PE (1998) Energetics of best performances in track cycling. Med Sci Sports Exerc 30:614–624

    CAS  PubMed  Google Scholar 

  • Capelli C, Antonutto G, Azabji-Kenfack M, Cautero M, Lador F, Moia C, Tam E, Ferretti G (2006) Factors determining the time course of \( \dot{V}\hbox{O}_{2\text{max} } \) decay during bedrest: implications for \( \dot{V}\hbox{O}_{2\text{max} } \) limitation. Eur J Appl Physiol 98:152–160

    CAS  PubMed  Google Scholar 

  • Cardus J, Marrades RM, Roca J, Barbera JA, Diaz O, Mascians JR, Rodriguez-Roisin R, Wagner PD (1998) Effect of FIO 2 on leg \( \dot{V}\hbox{O}_{2} \) during cycle ergometry in sedentary subjects. Med Sci Sports Exerc 30:697–703

    CAS  PubMed  Google Scholar 

  • Ceaser TG, Fitzhugh EC, Thompson DL, Bassett DR Jr (2013) Association of physical activity, fitness, and race: NHANES 1999–2004. Med Sci Sports Exerc 45:286–293

    PubMed  Google Scholar 

  • Celsing F, Svedenhag J, Pihlstedt P, Ekblom B (1987) Effects of anaemia and stepwise-induced polycythaemia on maximal aerobic power in individuals with high and low haemoglobin concentrations. Acta Physiol Scand 129:47–54

    CAS  PubMed  Google Scholar 

  • Cerretelli P (1976) Limiting factors to oxygen transport on Mount Everest. J Appl Physiol 40:658–667

    CAS  PubMed  Google Scholar 

  • Cerretelli P (1980) Gas exchange at high altitude. In: West JB (ed) Pulmonary gas exchange, vol II. Academic Press, New York, pp 97–147

  • Cerretelli P, di Prampero PE (1987) Gas exchange in exercise. In: Farhi LE, Tenney SM (eds) Handbook of physiology. The respiratory system III, vol 4: gas exchange. The American Physiological Society, Bethesda, pp 297–339

  • Cerretelli P, Hoppeler H (1996) Morphologic and metabolic response to chronic hypoxia. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology. Environmental physiology, sect. 4, vol II. Oxford University Press, New York, pp 1155–1181

  • Cerretelli P, Margaria R (1961) Maximum oxygen consumption at altitude. Int Z Angew Physiol 18:460–464

    CAS  PubMed  Google Scholar 

  • Cerretelli P, Pendergast DR, Paganelli WC, Rennie DW (1979) Effects of specific muscle training on \( \dot{V}\hbox{O}_{2} \)-on response and early blood lactate. J Appl Physiol 47:761–769

    CAS  PubMed  Google Scholar 

  • Chan OL, Duncan MT, Sundsten JW, Thinakaran T, Noh MN, Klissouras V (1976) The maximum aerobic power of the Temiars. Med Sci Sports 8:235–238

    CAS  PubMed  Google Scholar 

  • Chatterjee S, Saha SK, Saha D, Nag SK (1991) Maximal aerobic capacity of Bengali girl athletes of different sports activities. Jpn J Physiol 41:397–411

    CAS  PubMed  Google Scholar 

  • Chidnok W, Dimenna FJ, Bailey SJ, Burnley M, Wilkerson DP, Vanhatalo A, Jones AM (2013) \( \dot{V}\hbox{O}_{2\text{max} } \) is not altered by self-pacing during incremental exercise. Eur J Appl Physiol 113:529–539

    PubMed  Google Scholar 

  • Clark AR, Tawhai MH, Hoffman EA, Burrowes KS (2011) The interdependent contributions of gravitational and structural features to perfusion distribution in a multiscale model of the pulmonary circulation. J Appl Physiol 110:943–955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clausen JP (1977) Effect of physical training on cardiovascular adjustments to exercise in man. Physiol Rev 57:779–815

    CAS  PubMed  Google Scholar 

  • Clausen JP, Klausen K, Rasmussen B, Trap-Jensen J (1973) Central and peripheral circulation changes after training of arms and legs. Am J Physiol 225:675–682

    CAS  PubMed  Google Scholar 

  • Convertino VA (1996) Exercise and adaptation to microgravity environments. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology. Environmental physiology, sect. 4, vol I. Oxford University Press, New York, pp 815–843

  • Convertino VA, Hung J, Goldwater DJ, Debusk RF (1982) Cardiovascular responses to exercise in middle age men after 10 days of bed-rest. Circulation 65:134–140

    CAS  PubMed  Google Scholar 

  • Convertino VA, Goldwater DJ, Sandler H (1986) Bed rest induced peak \( \dot{V}\hbox{O}_{2} \) reduction associated with age, gender and aerobic capacity. Aviat Space Environ Med 57:17–22

    CAS  PubMed  Google Scholar 

  • Costill DL, Daniels J, Evans W, Fink W, Krahenbuhl G, Saltin B (1976) Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 40(149–154):67

    Google Scholar 

  • Cottin F, Médigue C, Papelier Y (2008) Effect of heavy exercise on spectral baroreflex sensitivity, heart rate, and blood pressure variability in well-trained humans. Am J Physiol Heart Circ Physiol 295:H1150–H1155

    CAS  PubMed  Google Scholar 

  • Cymerman A, Reeves JT, Sutton JR, Rock PB, Groves BM, Malconian MK, Young PM, Wagner PD, Houston CM (1989) Operation Everest II: maximal oxygen uptake at extreme altitude. J Appl Physiol 66:2446–2453

    CAS  PubMed  Google Scholar 

  • Daussin FN, Ponsot E, Dufour SP, Lonsdorfer-Wolf E, Doutreleau S, Geny B, Piquard F, Richard R (2007) Improvement of \( \dot{V}\hbox{O}_{2\text{max} } \) by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol 101:377–383

    PubMed  Google Scholar 

  • Davies CTM, Sargeant AJ (1974) Effects of training on the physiological responses of one- and two-leg work. J Appl Physiol 38:377–381

    Google Scholar 

  • Davies CTM, Barnes C, Fox RH, Osikuto RO, Samueloff AS (1972) Ethnic differences in physical working capacity. J Appl Physiol 33:726–732

    CAS  PubMed  Google Scholar 

  • Dekerle J, Mucci P, Carter H (2012) Influence of moderate hypoxia on tolerance to high-intensity exercise. Eur J Appl Physiol 112:327–335

    CAS  PubMed  Google Scholar 

  • Dempsey JA, Wagner PD (1999) Exercise—induced arterial hypoxemia. J Appl Physiol 87:1997–2006

    CAS  PubMed  Google Scholar 

  • Dempsey JA, Hanson PG, Henderson KS (1984) Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 355:161–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dempsey JA, McKenzie DC, Haverkamp HC, Eldridge MW (2008) Update in the understanding of respiratory limitations to exercise performance in fit, active adults. Chest 134:613–622

    PubMed  Google Scholar 

  • di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222

    PubMed  Google Scholar 

  • di Prampero PE (1985) Metabolic and circulatory limitations to \( \dot{V}\hbox{O}_{2\text{max} } \) at the whole animal level. J Exp Biol 115:319–331

    PubMed  Google Scholar 

  • di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7:55–72

    PubMed  Google Scholar 

  • di Prampero PE (2000) Cycling on Earth, in space, on the Moon. Eur J Appl Physiol 82:345–360

    PubMed  Google Scholar 

  • di Prampero PE (2003) Factors limiting maximal performance in humans. Eur J Appl Physiol 90:420–429

    PubMed  Google Scholar 

  • di Prampero PE, Cerretelli P (1969) Maximal muscular power (aerobic and anaerobic) in African natives. Ergonomics 12:51–59

    PubMed  Google Scholar 

  • di Prampero PE, Ferretti G (1990) Factors limiting maximal oxygen consumption in humans. Respir Physiol 80:113–128

    PubMed  Google Scholar 

  • di Prampero PE, Ferretti G (1999) The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respir Physiol Neurobiol 118:103–115

    Google Scholar 

  • di Prampero PE, Piñera-Limas F, Sassi G (1970) Maximal muscular power, aerobic and anaerobic, in 116 athletes performing at the XIXth Olympic Games in Mexico. Ergonomics 13:665–674

    PubMed  Google Scholar 

  • di Prampero PE, Cortili G, Mognoni P, Saibene F (1979) Equation of motion of a cyclist. J Appl Physiol 47:201–206

    PubMed  Google Scholar 

  • Dill DB, Adams WC (1971) Maximal oxygen uptake at sea level and at 3,090 m altitude in high school champion runners. J Appl Physiol 30(854–859):80

    Google Scholar 

  • Dill DB, Myhre LG, Phillips EE, Brown DK (1966) Work capacity in acute exposures to altitude. J Appl Physiol 21:1168–1176

    CAS  PubMed  Google Scholar 

  • Downey AE, Chenoweth LM, Townsend DK, Ranum JD, Ferguson CS, Harms CA (2007) Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respir Physiol Neurobiol 156:137–146

    PubMed  Google Scholar 

  • Duncan MT, Horvath SM (1988) Physiological adaptations to thermal stress in tropical Asians. Eur J Appl Physiol 57:540–544

    CAS  Google Scholar 

  • Duncan GE, Howley ET, Johnson BN (1997) Applicability of \( \dot{V}\hbox{O}_{2\text{max} } \) criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc 29:273–278

    CAS  PubMed  Google Scholar 

  • Duncan GE, Li SM, Zhou XH (2005) Cardiovascular fitness among U.S. adults: NHANES 1999–2000 and 2001–2002. Med Sci Sports Exerc 37:1324–1328

    PubMed  Google Scholar 

  • Dunham C, Harms CA (2012) Effects of high-intensity interval training on pulmonary function. Eur J Appl Physiol 112:3061–3068

    PubMed  Google Scholar 

  • Edwards AM, Cooke CB (2004) Oxygen uptake kinetics and maximal aerobic power are unaffected by inspiratory muscle training in healthy subjects where time to exhaustion is extended. Eur J Appl Physiol 93:139–144

    CAS  PubMed  Google Scholar 

  • Ekblom B (1969) The effect of physical training on oxygen transport system in man. Acta Physiol Scand Suppl 328:1–45

    Google Scholar 

  • Ekblom B (1986) Factors determining maximal aerobic power. Acta Physiol Scand Suppl 556:15–19

    CAS  PubMed  Google Scholar 

  • Ekblom B, Hermansen L (1968) Cardiac output in athletes. J Appl Physiol 25:619–625

    CAS  PubMed  Google Scholar 

  • Ekblom B, Huot R (1972) Response to submaximal and maximal exercise at different levels of carboxyhemoglobin. Acta Physiol Scand 86:474–482

    CAS  PubMed  Google Scholar 

  • Ekblom B, Åstrand PO, Saltin B, Stenberg J, Wallström B (1968) Effect of training on circulatory response to exercise. J Appl Physiol 24:518–528

    CAS  PubMed  Google Scholar 

  • Ekblom B, Huot R, Stein EM, Thorstensson AT (1975) Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol 39:71–75

    CAS  PubMed  Google Scholar 

  • Ekblom B, Wilson G, Åstrand PO (1976) Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol 40:379–383

    CAS  PubMed  Google Scholar 

  • Eliakim A, Nemet D (2010) Exercise training, physical fitness and the growth hormone-insulin-like growth factor-1 axis and cytokine balance. Med Sport Sci 55:128–140

    CAS  PubMed  Google Scholar 

  • Elliott AD, Skowno J, Prabhu M, Noakes TD, Ansley L (2013). Evidence of cardiac functional reserve upon exhaustion during incremental exercise to determine \( \dot{V}\hbox{O}_{2\text{max} } \). Br J Sports Med. doi:10.1136/bjsports-2012-091752

  • Ellis CG, Wrigley SM, Groom AC (1994) Heterogeneity of red blood cell perfusion in capillary networks supplied by a single arteriole in resting skeletal muscle. Circ Res 75:357–368

    CAS  PubMed  Google Scholar 

  • Esposito F, Ferretti G (1997) The effects of breathing He–O2 mixtures on maximal oxygen consumption in normoxic and hypoxic men. J Physiol 503:215–221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esposito F, Limonta E, Alberti G, Veicsteinas A, Ferretti G (2010) Effect of respiratory muscle training on maximum aerobic power in normoxia and hypoxia. Respir Physiol Neurobiol 170:268–272

    PubMed  Google Scholar 

  • Fagraeus L, Karlsson J, Linnarsson D, Saltin B (1973) Oxygen uptake during maximal work at lowered and raised ambient air pressure. Acta Physiol Scand 87:411–421

    CAS  PubMed  Google Scholar 

  • Fairshter RD, Walters J, Salness K, Fox M, Minh VD, Wilson AF (1983) A comparison of incremental exercise tests during cycle and treadmill ergometry. Med Sci Sports Exerc 15:549–554

    CAS  PubMed  Google Scholar 

  • Faoro V, Huez S, Vanderpool RR, Groepenhoff H, de Bisschop C, Martinot JB, Lamotte M, Pavelescu A, Guénard H, Naeije R (2014) Pulmonary circulation and gas exchange at exercise in Sherpas at altitude. J Appl Physiol 116:919–926

    PubMed  Google Scholar 

  • Favier R, Spielvogel H, Desplanches D, Ferretti G, Kayser B, Grünenfelder A, Leuenberger M, Tüscher L, Caceres E, Hoppeler H (1995) Training in hypoxia vs training in normoxia in high altitude natives. J Appl Physiol 78:2286–2293

    CAS  PubMed  Google Scholar 

  • Ferretti G (1990) On maximal oxygen consumption in hypoxic humans. Experientia 46:1188–1194

    CAS  PubMed  Google Scholar 

  • Ferretti G (2003) Limiting factors to oxygen transport on Mount Everest 30 years after: a critique of Paolo Cerretelli’s contribution to the study of altitude physiology. Eur J Appl Physiol 90:344–350

    CAS  PubMed  Google Scholar 

  • Ferretti G, Capelli C (2009) Maximal O2 consumption: effects of gravity withdrawal and resumption. Respir Physiol Neurobiol 169:S50–S54

    PubMed  Google Scholar 

  • Ferretti G, di Prampero PE (1995) Factors limiting maximal O2 consumption: effects of acute changes in ventilation. Respir Physiol 99:259–271

    CAS  PubMed  Google Scholar 

  • Ferretti G, Atchou G, Grassi B, Marconi C, Cerretelli P (1991) Energetics of locomotion in African pygmies. Eur J Appl Physiol 62:7–10

    CAS  Google Scholar 

  • Ferretti G, Antonutto G, Denis C, Hoppeler H, Minetti AE, Narici MV, Desplanches D (1997a) The interplay of central and peripheral factors in limiting maximal O2 consumption in man after prolonged bed rest. J Physiol 501:677–686

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferretti G, Moia C, Thomet J, Kayser B (1997b) The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. J Physiol 498:231–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferretti G, Bringard A, Perini R (2011) An analysis of performance in human locomotion. Eur J Appl Physiol 111:391–401

    PubMed  Google Scholar 

  • Fleg JL, Lakatta EG (1989) Role of muscle loss in the age-associated reduction of \( \dot{V}\hbox{O}_{2\text{max} } \). J Appl Physiol 65:1147–1151

    Google Scholar 

  • Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, Lakatta EG (2005) Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 112:674–682

    PubMed  Google Scholar 

  • Flück M (2010) Myocellular limitations of human performance and their modification through genome-dependent responses at altitude. Exp Physiol 95:451–462

    Google Scholar 

  • Friman G (1979) Effect of clinical bed rest for seven days on physical performance. Acta Med Scand 205(389–393):103

    Google Scholar 

  • Fulco CS, Rock PB, Trad L, Forte V, Cymerman A (1988) Maximal cardiorespiratory responses to one- and two-legged cycling during acute and long-term exposure to 4,300 meters altitude. Eur J Appl Physiol 57:761–766

    CAS  Google Scholar 

  • Gaesser GA, Poole DC (1996) The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 24:35–71

    CAS  PubMed  Google Scholar 

  • Gaesser GA, Wilson LA (1988) Effects of continuous and interval training on the parameters of the power-endurance time relationship for high-intensity exercise. Int J Sports Med 9:417–421

    CAS  PubMed  Google Scholar 

  • Gaskill SE, Serfass RC, Bacharach DW, Kelly JM (1999) Responses to training in cross-country skiers. Med Sci Sports Exerc 31:1211–1217

    CAS  PubMed  Google Scholar 

  • Gavin TP, Derchak PA, Stager JM (1998) Ventilation’s role in the decline in \( \dot{V}\hbox{O}_{2\text{max} } \) and SaO 2 in acute hypoxic exercise. Med Sci Sport Exerc 30:195–199

    CAS  Google Scholar 

  • Gayeski TE, Honig CR (1986) O2 gradients from sarcolemma to cell interior in red muscle at maximal \( \dot{V}\hbox{O}_{2} \). Am J Physiol Heart Circ Physiol 251:H789–H799

    CAS  Google Scholar 

  • Geiser J, Vogt M, Billeter R, Zuleger C, Belforti F, Hoppeler H (2001) Training high—living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int J Sports Med 22:579–585

    CAS  PubMed  Google Scholar 

  • Gibala MJ, Little JP, Macdonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590:1077–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giesbrecht GG, Puddy A, Ahmed M, Younes M, Anthonisen NR (1991) Exercise endurance and arterial desaturation in normobaric hypoxia with increased chemosensitivity. J Appl Physiol 70:1770–1774

    CAS  PubMed  Google Scholar 

  • Gledhill N, Warburton D, Jamnik V (1999) Haemoglobin, blood volume, cardiac function, and aerobic power. Can J Appl Physiol 24:54–65

    CAS  PubMed  Google Scholar 

  • Glick Z, Schwartz E (1974) Physical working capacity of young men of different ethnic groups in Israel. J Appl Physiol 37:22–26

    CAS  PubMed  Google Scholar 

  • Gollnick PD, Armstrong RB, Saubert CW IV, Piehl K, Saltin B (1972) Enzyme activity and fiber composition in skeletal muscle of trained and untrained men. J Appl Physiol 33:312–319

    CAS  PubMed  Google Scholar 

  • Gollnick PD, Armstrong RB, Saltin B, Saubert CW IV, Sembrowich L, Shephard RE (1973) Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol 34:107–111

    CAS  PubMed  Google Scholar 

  • Gordon D, Mehter M, Gernigon M, Caddy O, Keiller D, Barnes R (2012) The effects of exercise modality on the incidence of plateau at \( \dot{V}\hbox{O}_{2\text{max} } \). Clin Physiol Funct Imaging 32:394–399

    PubMed  Google Scholar 

  • Gordon D, Wood M, Porter A, Vetrivel V, Gernigon M, Caddy O, Merzbach V, Keiller D, Baker J, Barnes R (2014) Influence of blood donation on the incidence of plateau at \( \dot{V}\hbox{O}_{2\text{max} } \). Eur J Appl Physiol 114:21–27

    PubMed  Google Scholar 

  • Gormley SE, Swain DP, High R, Spina RJ, Dowling EA, Kotipalli US, Gandrakota R (2008) Effect of intensity of aerobic training on VO2max. Med Sci Sports Exerc 40:1336–1343

    PubMed  Google Scholar 

  • Greenleaf JE, Bernauer EM, Ertl AC, Trowbridge TS, Wade CE (1989) Work capacity during 30 days of bed rest with isometric and isotonic exercise. J Appl Physiol 67:1820–1826

    CAS  PubMed  Google Scholar 

  • Greksa LP, Haas JD, Leatherman TL, Thomas RB, Spielvogel H (1984) Work performance of high-altitude Aymara males. Ann Hum Biol 11:227–233

    CAS  PubMed  Google Scholar 

  • Grimsmo J, Arnesen H, Maehlum S (2010) Changes in cardiorespiratory function in different groups of former and still active male cross-country skiers: a 28-30-year follow-up study. Scand J Med Sci Sports 20:151–161

    Google Scholar 

  • Hagberg JM (1987) Effect of training on the decline of \( \dot{V}\hbox{O}_{2\text{max} } \) with aging. Fed Proc 46:1830–1833

    CAS  PubMed  Google Scholar 

  • Hagberg JM, Coyle EF (1984) Physiological comparison of competitive race walking and running. Int J Sports Med 5:74–77

    CAS  PubMed  Google Scholar 

  • Hahn AG, Gore CJ, Martin DT, Ashenden MJ, Roberts AD, Logan PA (2001) An evaluation of the concept of living at moderate altitude and training at sea level. Comp Biochem Physiol A 128:777–789

    CAS  Google Scholar 

  • Hawkins SA, Marcell TJ, Victoria Jaque S, Wiswell RA (2001) A longitudinal assessment of change in \( \dot{V}\hbox{O}_{2\text{max} } \) and maximal heart rate in master athletes. Med Sci Sports Exerc 33:1744–1750

    CAS  PubMed  Google Scholar 

  • Hawkins MN, Raven PB, Snell PG, Stray-Gundersen J, Levine BD (2007) Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med Sci Sports Exerc 39:103–107

    PubMed  Google Scholar 

  • Heath GW, Hagberg JM, Ehsani AA, Holloszy JO (1981) A physiological comparison of young and older endurance athletes. J Appl Physiol 51:634–640

    CAS  PubMed  Google Scholar 

  • Heinonen I, Nesterov SV, Kemppainen J, Nuutila P, Knuuti J, Laitio R, Kjaer M, Boushel R, Kalliokoski KK (2007) Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans. J Appl Physiol 103:2042–2048

    CAS  PubMed  Google Scholar 

  • Heinonen I, Duncker DJ, Knuuti J, Kalliokoski KK (2012) The effect of acute exercise with increasing workloads on inactive muscle blood flow and its heterogeneity in humans. Eur J Appl Physiol 112:3503–3509

    CAS  PubMed  Google Scholar 

  • Helgerud J (1994) Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Eur J Appl Physiol 68:155–161

    CAS  Google Scholar 

  • Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve \( \dot{V}\hbox{O}_{2\text{max} } \) more than moderate training. Med Sci Sports Exerc 39:665–671

    PubMed  Google Scholar 

  • Henriksson J (1977) Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol 270:661–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henriksson J, Reitmann JS (1977) Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiol Scand 99:91–97

    CAS  PubMed  Google Scholar 

  • Henson LC, Poole DC, Whipp BJ (1989) Fitness as a determinant of oxygen uptake response to constant-load exercise. Eur J Appl Physiol 59:21–28

    CAS  Google Scholar 

  • Herbst R (1928) Der Gasstoffwechsel als Mass der körperlichen Leistungsfähigkeit. I. Mitteilung : die Bestimmung des Sauerstoffaufnahmevermögens bein Gesunden. Deut Arch Klin Med 162:33–50

    Google Scholar 

  • Hermansen L, Saltin B (1969) Oxygen uptake during maximal treadmill and bicycle exercise. J Appl Physiol 26:31–37

    CAS  PubMed  Google Scholar 

  • Hermansen L, Wachtlova M (1971) Capillary density of skeletal muscle in well-trained and untrained men. J Appl Physiol 30:860–863

    CAS  PubMed  Google Scholar 

  • Heubert R, Bocquet V, Koralsztein JP, Billat VL (2003) Effets de 4 semaines d’entraînement sur le temps limite à \( \dot{V}\hbox{O}_{2\text{max} } \). Can J Appl Physiol 28:717–736

    PubMed  Google Scholar 

  • Heubert RAP, Billat VL, Chasseaing P, Bocquet V, Morton RH, Koralsztein JP, di Prampero PE (2005) Effects of a previous sprint on the parameters of the work-time to exhaustion relationship in high intensity cycling. Int J Sport Med 26:583–592

    CAS  Google Scholar 

  • Hickson RC, Hagberg JM, Ehsani AA, Holloszy JO (1981) Time course of the adaptive responses of aerobic power and heart rate to training. Med Sci Sports Exerc 13:17–20

    CAS  PubMed  Google Scholar 

  • Hickson RC, Foster C, Pollock ML, Galassi TM, Rich S (1985) Reduced training intensities and loss of aerobic power, endurance, and cardiac growth. J Appl Physiol 58:492–499

    CAS  PubMed  Google Scholar 

  • Hickson RC, Bomze HA, Holloszy JO (1997) Linear increase in aerobic power induced by a strenuous program of endurance exercise. J Appl Physiol 42:372–376

    Google Scholar 

  • Hikida RS, Gollnick PD, Dudley GA, Convertino VA, Buchanan P (1989) Structural and metabolic characteristics of human skeletal muscle following 30 days of simulated microgravity. Aviat Space Environ Med 60:664–670

    CAS  PubMed  Google Scholar 

  • Hildebrandt AL, Pilegaard H, Neufer PD (2003) Differential transcriptional activation of select metabolic genes in response to variations in exercise intensity and duration. Am J Physiol Endocrinol Metab 285:E1021–E1027

    CAS  PubMed  Google Scholar 

  • Hill DW (1993) The critical power concept. Sports Med 16:237–254

    CAS  PubMed  Google Scholar 

  • Hill AV, Lupton H (1923) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 16:135–171

    CAS  Google Scholar 

  • Hogan MC, Bebout DE, Wagner PD (1991a) Effect of hemoglobin concentration on maximal O2 uptake in canine gastrocnemius muscle in situ. J Appl Physiol 70:1105–1112

    CAS  PubMed  Google Scholar 

  • Hogan MC, Bebout DE, Wagner PD (1991b) Effect of increased Hb-O2 affinity on \( \dot{V}\hbox{O}_{2\text{max} } \) at constant O2 delivery in dog muscle in situ. J Appl Physiol 70:2656–2662

    CAS  PubMed  Google Scholar 

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838

    CAS  PubMed  Google Scholar 

  • Honig CR, Gayeski TE (1993) Resistance to O2 diffusion in anemic red muscle: roles of flux density and cell PO 2. Am J Physiol Heart Circ Physiol 265:H868–H875

    CAS  Google Scholar 

  • Hoppeler H (1986) Exercise-induced ultrastructural changes in skeletal muscle. Int J Sports Med 7:187–204

    CAS  PubMed  Google Scholar 

  • Hoppeler H (1990) The different relationship of \( \dot{V}\hbox{O}_{2\text{max} } \) to muscle mitochondria in humans and quadrupedal animals. Respir Physiol 80:137–146

    CAS  PubMed  Google Scholar 

  • Hoppeler H, Flück M (2003) Plasticity of skeletal muscle mitochondria: structure and function. Med Sci Sports Exerc 35:95–104

    CAS  PubMed  Google Scholar 

  • Hoppeler H, Weibel ER (2000) Structural and functional limits for oxygen supply to muscle. Acta Physiol Scand 168:445–456

    CAS  PubMed  Google Scholar 

  • Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P, Weibel ER (1985) Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 59:320–327

    CAS  PubMed  Google Scholar 

  • Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, Cerretelli P (1990) Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med 11(Suppl 1):S3–S9

    PubMed  Google Scholar 

  • Hoppeler H, Klossner S, Vogt M (2008) Training in hypoxia and its effects on skeletal muscle tissue. Scand J Med Sci Sports 18(Suppl 1):38–49

    PubMed  Google Scholar 

  • Horvath SM, Bedi JF, Wagner JA, Agnew J (1988) Maximal aerobic capacity at several ambient concentrations of CO at several altitudes. J Appl Physiol 65:2696–2708

    CAS  PubMed  Google Scholar 

  • Howald H (1982) Training-induced morphological and functional changes in skeletal muscle. Int J Sports Med 3:1–12

    CAS  PubMed  Google Scholar 

  • Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R (1985) Influences of endurance training on the ultrastructural composition of the different muscle fibre types in humans. Pflügers Arch 403:369–376

    CAS  PubMed  Google Scholar 

  • Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301

  • Hunter GR, Weinsier RL, McCarthy JP, Enette Larson-Meyer D, Newcomer BR (2001) Hemoglobin, muscle oxidative capacity, and \( \dot{V}\hbox{O}_{2\text{max} } \) in African-American and Caucasian women. Med Sci Sports Exerc 33:1739–1743

    CAS  PubMed  Google Scholar 

  • Ingjer F (1979) Effects of endurance training on muscle fiber ATP-ase activity, capillary supply and mitochondrial content in man. J Physiol 294:419–432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins DG, Quigley BM (1992) Endurance training enhances critical power. Med Sci Sports Exerc 24:1283–1289

    CAS  PubMed  Google Scholar 

  • Johnson BD, Saupe KW, Dempsey JA (1992) Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol 73:874–886

    CAS  PubMed  Google Scholar 

  • Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) Critical power: implications for the determination of \( \dot{V}\hbox{O}_{2\text{max} } \) and exercise tolerance. Med Sci Sports Exerc 42:1876–1890

    PubMed  Google Scholar 

  • Kaijser L (1970) Limiting factors for aerobic muscle performance. Acta Physiol Scand Suppl 346:1–96

    CAS  PubMed  Google Scholar 

  • Kaiser P, Tesch PA, Frisk-Holmberg M, Juhlin-Dannfeldt A, Kaijser L (1986) Effect of beta-1-selective and non-selective beta blockade on work capacity and muscle metabolism. Clin Physiol 6:197–207

    CAS  PubMed  Google Scholar 

  • Kalliokoski KK, Knuuti J, Nuutila P (2004) Blood transit time heterogeneity is associated to oxygen extraction in exercising human skeletal muscle. Microvasc Res 67:125–132

    PubMed  Google Scholar 

  • Kashihara H, Haruna Y, Suzuki Y, Kawakubo K, Takenaka K, Bonde-Petersen F, Gunji A (1994) Effects of mild supine exercise during 20 days bed rest on maximal oxygen uptake rate in young humans. Acta Physiol Scand Suppl 616:19–26

    CAS  PubMed  Google Scholar 

  • Kayser B, Hoppeler H, Claassen H, Cerretelli P (1991) Muscle structure and performance capacity of Himalayan Sherpas. J Appl Physiol 70:1938–1942

    CAS  PubMed  Google Scholar 

  • Kayser B, Marconi C, Amatya T, Basnyat B, Colombini A, Broers B, Cerretelli P (1994) The metabolic and ventilatory response to exercise in Tibetans born at low altitude. Respir Physiol 98:15–26

    CAS  PubMed  Google Scholar 

  • Knight DR, Schaffartzik W, Poole DC, Hogan MC, Bebout DE, Wagner PD (1993) Effects of hyperoxia on maximal leg O2 supply and utilization in humans. J Appl Physiol 75:2586–2594

    CAS  PubMed  Google Scholar 

  • Koistinen P, Takala T, Martikkala V, Leppaluoto J (1995) Aerobic fitness influences the response of maximal oxygen uptake and lactate threshold in acute hypobaric hypoxia. Int J Sports Med 16:78–81

    CAS  PubMed  Google Scholar 

  • Krip B, Gledhill N, Jamnik V, Warburton D (1997) Effect of alterations in blood volume on cardiac function during maximal exercise. Med Sci Sports Exerc 29:1469–1476

    CAS  PubMed  Google Scholar 

  • Kruk B, Pekkarinen H, Manninen K, Hänninen O (1991) Comparison in men of physiological responses to exercise of increasing intensity at low and moderate ambient temperatures. Eur J Appl Physiol 62:353–357

    CAS  Google Scholar 

  • Krustrup P, Jones AM, Wilkerson DP, Calbet JA, Bangsbo J (2009) Muscular and pulmonary O2 uptake kinetics during moderate and high-intensity sub-maximal knee-extensor exercise in humans. J Physiol 587:1843–1856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawler J, Powers SK, Thompson D (1988) Linear relationship between \( \dot{V}\hbox{O}_{2\text{max} } \) and \( \dot{V}\hbox{O}_{2\text{max} } \) decrement during exposure to acute hypoxia. J Appl Physiol 64:1486–1992

    CAS  PubMed  Google Scholar 

  • Lee SM, Schneider SM, Boda WL, Watenpaugh DE, Macias BR, Meyer RS, Hargens AR (2007) Supine LBNP exercise maintains exercise capacity in male twins during 30-d bed rest. Med Sci Sports Exerc 39:1315–1326

    PubMed  Google Scholar 

  • Lee SM, Schneider SM, Boda WL, Watenpaugh DE, Macias BR, Meyer RS, Hargens AR (2009) LBNP exercise protects aerobic capacity and sprint speed of female twins during 30 days of bed rest. J Appl Physiol 106:919–928

    PubMed Central  PubMed  Google Scholar 

  • Levine BD (2008) \( \dot{V}\hbox{O}_{2\text{max} } \): what do we know, and what do we still need to know? J Physiol 586:25–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levine BD, Stray-Gundersen J (1997) ‘Living high-training low’: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83:102–112

    CAS  PubMed  Google Scholar 

  • Levine BD, Lane LD, Buckey JC, Friedman DB, Blomqvist CG (1991) Left ventricular pressure–volume and Frank-Starling relations in endurance athletes. Implications for orthostatic tolerance and exercise performance. Circulation 84:1016–1023

    CAS  PubMed  Google Scholar 

  • Levine BD, Lane LD, Watenpaugh DE, Gaffney FA, Buckey JC, Blomqvist CG (1996) Maximal exercise performance after adaptation to microgravity. J Appl Physiol 81:686–694

    CAS  PubMed  Google Scholar 

  • Lindstedt SL, Wells DJ, Jones JR, Hoppeler H, Thronson HA (1988) Limitations to aerobic performance in mammals: interaction of structure and demand. Int J Sports Med 9:210–217

    CAS  PubMed  Google Scholar 

  • Losnegard T, Myklebust H, Spencer M, Hallén J (2013) Seasonal variations in \( \dot{V}\hbox{O}_{2\text{max} } \), O2-cost, O2-deficit, and performance in elite cross-country skiers. J Strength Cond Res 27:1780–1790

    PubMed  Google Scholar 

  • Lucia A, Hoyos J, Chicharro JL (2000) Physiological response to professional road cycling: climbers vs. time trialists. Int J Sports Med 21:505–512

    CAS  PubMed  Google Scholar 

  • Maksud MG, Coutts KD (1971) Comparison of a continuous and discontinuous graded treadmill test for maximal oxygen uptake. Med Sci Sports 3:63–65

    CAS  PubMed  Google Scholar 

  • Marconi C, Heisler N, Meyer M, Weitz H, Pendergast DR, Cerretelli P, Piiper J (1988) Blood flow distribution and its temporal variability in stimulated dog gastrocnemius muscle. Respir Physiol 74:1–13

    CAS  PubMed  Google Scholar 

  • Marconi C, Marzorati M, Grassi B, Basnyat B, Colombini A, Kayser B, Cerretelli P (2004) Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians. J Physiol 556:661–671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Margaria R, Cerretelli P, Marchi S, Rossi L (1961) Maximum exercise in oxygen. Int Z angew Physiol 18:465–467

    CAS  PubMed  Google Scholar 

  • Margaria R, Camporesi E, Aghemo P, Sassi G (1972) The effect of O2 breathing on maximal aerobic power. Pflügers Arch 336:225–235

    CAS  PubMed  Google Scholar 

  • Markov G, Spengler CM, Knopfli-Lenzin C, Stuessi C, Boutellier U (2001) Respiratory muscle training increases cycling endurance without affecting cardiovascular responses to exercise. Eur J Appl Physiol 85:233–239

    CAS  PubMed  Google Scholar 

  • Masuda K, Okazaki K, Kuno S, Asano K, Shimojo H, Katsuta S (2001) Endurance training under 2500-m hypoxia does not increase myoglobin content in human skeletal muscle. Eur J Appl Physiol 85:486–490

    CAS  PubMed  Google Scholar 

  • McArdle WD, Katch FI, Pechar GS (1973) Comparison of continuous and discontinuous treadmill and bicycle tests for max \( \dot{V}\hbox{O}_{2} \). Med Sci Sports 5:156–160

    CAS  PubMed  Google Scholar 

  • McArdle WD, Magel JR, Lesmes GR, Pechar GS (1976) Metabolic and cardiovascular adjustment to work in air and water at 18, 25 and 33°C. J Appl Physiol 40:85–90

    CAS  PubMed  Google Scholar 

  • McGuire DK, Levine BD, Williamson JW, Snell PG, Blomqvist CG, Saltin B, Mitchell JH (2001) A 30-year follow-up of the Dallas Bedrest and Training Study: I. Effect of age on the cardiovascular response to exercise. Circulation 104:1350–1357

    CAS  PubMed  Google Scholar 

  • Mekjavic IB, Golja P, Tipton MJ, Eiken O (2005) Human thermoregulatory function during exercise and immersion after 35 days of horizontal bed-rest and recovery. Eur J Appl Physiol 95:163–171

    PubMed  Google Scholar 

  • Mitchell JH, Blomqvist CG (1971) Maximal oxygen uptake. New Engl J Med 284:1018–1022

    CAS  PubMed  Google Scholar 

  • Miura A, Sato H, Sato H, Whipp BJ, Fukuba Y (2000) The effect of glycogen depletion on the curvature constant parameter of the power-duration curve for cycle ergometry. Ergonomics 43:133–141

    CAS  PubMed  Google Scholar 

  • Mollard P, Woorons X, Letournel M, Lamberto C, Favret F, Pichon A, Beaudry M, Richalet JP (2007) Determinants of maximal oxygen uptake in moderate acute hypoxia in endurance athletes. Eur J Appl Physiol 100:663–673

    CAS  PubMed  Google Scholar 

  • Monod H, Scherrer J (1965) The work capacity of a synergic muscular group. Ergonomics 8:329–338

    Google Scholar 

  • Mooren FC, Viereck J, Krüger K, Thum T (2014) Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am J Physiol Heart Circ Physiol 306:H557–H563

    CAS  PubMed  Google Scholar 

  • Moritani T, Nagata A, deVries HA, Muro M (1981) Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24:339–350

    CAS  PubMed  Google Scholar 

  • Morton RH (1994) Critical power test for ramp exercise. Eur J Appl Physiol 69:435–438

    CAS  Google Scholar 

  • Morton RH (1996) A 3-parameter critical power model. Ergonomics 39:611–619

    CAS  PubMed  Google Scholar 

  • Morton RH (2011) Why peak power is higher at the end of steeper ramps: an explanation based on the ‘‘critical power’’ concept. J Sport Sci 29:307–309

    Google Scholar 

  • Morton RH, Billat LV (2004) The critical power model for intermittent exercise. Eur J Appl Physiol 91:303–307

    PubMed  Google Scholar 

  • Morton RH, Green S, Bishop D, Jenkins DG (1997) Ramp and constant power trials produce equivalent critical power estimates. Med Sci Sports Exerc 29:833–836

    CAS  PubMed  Google Scholar 

  • Noakes TD (1998) Maximal oxygen uptake: ‘classical’ versus ‘contemporary’ viewpoints: a rebuttal. Med Sci Sports Exerc 30:1381–1398

    CAS  PubMed  Google Scholar 

  • Noakes TD, Peltonen JE, Rusko HK (2001) Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. J Exp Biol 204:3225–3234

    CAS  PubMed  Google Scholar 

  • Oelz O, Howald H, di Prampero PE, Hoppeler H, Claassen H, Jenni R, Bühlmann A, Ferretti G, Brückner JC, Veicsteinas A, Gussoni M, Cerretelli P (1986) Physiological profile of world class high altitude climbers. J Appl Physiol 60:1734–1742

    CAS  PubMed  Google Scholar 

  • Ogawa T, Spina RJ, Martin WH 3rd, Kohrt WM, Schechtman KB, Holloszy JO, Ehsani AA (1992) Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation 86:494–503

    CAS  PubMed  Google Scholar 

  • Ogawa T, Hayashi K, Ichinose M, Nishiyasu T (2007) Relationship between rest ventilatory chemosensitivity and maximal oxygen uptake in moderate hypobaric hypoxia. J Appl Physiol 103:1221–1226

    PubMed  Google Scholar 

  • Ogawa T, Calbet JAL, Honda Y, Fuji N, Nishiyasu T (2010) The effects of breathing a helium–oxygen gas mixture on maximal pulmonary ventilation and maximal oxygen consumption during exercise in acute moderate hypobaric hypoxia. Eur J Appl Physiol 110:853–861

    CAS  PubMed  Google Scholar 

  • Ogita F, Hara M, Tabata I (1996) Anaerobic capacity and maximal oxygen uptake during arm stroke, leg kicking and whole body swimming. Acta Physiol Scand 157:435–441

    CAS  PubMed  Google Scholar 

  • Otis AB (1987) An overview of gas exchange. In: Farhi LE, Tenney SM (eds) Handbook of physiology. The respiratory system, Sect. 3, vol IV. American Physiological Society, Bethesda, pp 1–11

  • Padilla S, Bourdin M, Barthélémy JC, Lacour JR (1992) Physiological correlates of middle-distance running performance. A comparative study between men and women. Eur J Appl Physiol 65:561–566

    CAS  Google Scholar 

  • Padilla S, Mujika I, Cuesta G, Goiriena JJ (1999) Level ground and uphill cycling ability in professional road cycling. Med Sci Sports Exerc 31:878–885

    CAS  PubMed  Google Scholar 

  • Perini R, Veicsteinas A (2003) Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol 90:317–325

    PubMed  Google Scholar 

  • Perry CG, Talanian JL, Heigenhauser GJ, Spriet LL (2007) The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance. J Appl Physiol 102:1022–1027

    CAS  PubMed  Google Scholar 

  • Perry CGR, Heigenhauser GJF, Bonen A, Spriet LL (2008) High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab 33:1112–1123

    CAS  PubMed  Google Scholar 

  • Piiper J, Scheid P (1981) Model for capillary-alveolar equilibration with special reference to O2 uptake in hypoxia. Respir Physiol 46:193–208

    CAS  PubMed  Google Scholar 

  • Piiper J, Dejours P, Haab P, Rahn H (1971) Concepts and basic quantities in gas exchange physiology. Respir Physiol 13:292–304

    CAS  PubMed  Google Scholar 

  • Piiper J, Meyer M, Scheid P (1984) Dual role of diffusion in tissue gas exchange: blood-tissue equilibration and diffusion shunt. Respir Physiol 56:131–144

    CAS  PubMed  Google Scholar 

  • Piiper J, Pendergast DR, Marconi C, Meyer M, Heisler N, Cerretelli P (1985) Blood flow distribution in dog gastrocnemius muscle at rest and during stimulation. J Appl Physiol 58:2068–2074

    CAS  PubMed  Google Scholar 

  • Pirnay F, Dujardin J, Deroanne R, Petit JM (1971) Muscular exercise during intoxication by carbon monoxide. J Appl Physiol 31:573–575

    CAS  PubMed  Google Scholar 

  • Pirnay F, Deroanne R, Petit JM (1977) Influence of water temperature on thermal, circulatory and respiratory responses to muscular work. Eur J Appl Physiol 37:129–136

    CAS  Google Scholar 

  • Plowman SA, Drinkwater BL, Horvath SM (1979) Age and aerobic power in women: a longitudinal study. J Gerontol 34:512–520

    CAS  PubMed  Google Scholar 

  • Poole DC, Ward SA, Gardner GW, Whipp BJ (1988) Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31:1265–1279

    CAS  PubMed  Google Scholar 

  • Poole DC, Ward SA, Whipp BJ (1990) The effects of training on the metabolic and respiratory profile of high-intensity cycle ergometer exercise. Eur J Appl Physiol 59:421–429

    CAS  Google Scholar 

  • Poole DC, Schaffartzik W, Knight DR, Derion T, Kennedy B, Guy HJ, Prediletto R, Wagner PD (1991) Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J Appl Physiol 71:1245–1260

    CAS  PubMed  Google Scholar 

  • Poole DC, Barstow TJ, Gaesser GA, Willis WT, Whipp BJ (1994) \( \dot{V}\hbox{O}_{2} \) slow component: physiological and functional significance. Med Sci Sports Exerc 26:1354–1358

    CAS  PubMed  Google Scholar 

  • Powers SK, Lawler J, Dempsey JA, Dodd S, Landry G (1989) Effects of incomplete pulmonary gas exchange on VO2max. J Appl Physiol 66:2491–2495

    CAS  PubMed  Google Scholar 

  • Pringle JSM, Jones AM (2002) Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol 88:214–226

    CAS  PubMed  Google Scholar 

  • Prior SJ, Hagberg JM, Phares DA, Brown MD, Fairfull L, Ferrell RE, Roth SM (2003) Sequence variation in hypoxia-inducible factor 1alpha (HIF1A): association with maximal oxygen consumption. Physiol Genomics 15:20–26

    CAS  PubMed  Google Scholar 

  • Prior SJ, Hagberg JM, Paton CM, Douglass LW, Brown MD, McLenithan JC, Roth SM (2006) DNA sequence variation in the promoter region of the VEGF gene impacts VEGF gene expression and maximal oxygen consumption. Am J Physiol Heart Circ Physiol 290:H1848–H1855

    CAS  PubMed  Google Scholar 

  • Proctor DN, Joyner MJ (1997) Skeletal muscle mass and the reduction of \( \dot{V}\hbox{O}_{2\text{max} } \) in trained older subjects. J Appl Physiol 82:1411–1415

    CAS  PubMed  Google Scholar 

  • Pugh LGCE (1967) Athletes at altitude. J Physiol 192:619–646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pugh LGCE, Gill MB, Lahiri S, Milledge JS, Ward MP, West JB (1964) Maximal exercise at great altitudes. J Appl Physiol 19:431–440

    CAS  PubMed  Google Scholar 

  • Rådegran G, Blomstrand E, Saltin B (1999) Peak muscle perfusion and oxygen uptake in humans: importance of precise estimates of muscle mass. J Appl Physiol 87:2375–2380

    PubMed  Google Scholar 

  • Rahn H, Fenn WO (1955) A graphical analysis of the respiratory gas exchange. The O2–CO2 diagram. American Physiological Society, Washington

  • Rice TK, Sarzynski MA, Sung YJ, Argyropoulos G, Stütz AM, Teran-Garcia M, Rao DC, Bouchard C, Rankinen T (2012) Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study. Eur J Appl Physiol 112:2969–2978

    PubMed Central  PubMed  Google Scholar 

  • Richardson RS, Kennedy B, Knight DR, Wagner PD (1995a) High muscle blood flows are not attenuated by recruitment of additional muscle mass. Am J Physiol Heart Circ Physiol 269:H1545–H1552

    CAS  Google Scholar 

  • Richardson RS, Knight DR, Poole DC, Kurdak SS, Hogan MC, Grassi B, Wagner PD (1995b) Determinants of maximal exercise \( \dot{V}\hbox{O}_{2} \) during single leg knee-extensor exercise in humans. Am J Physiol Heart Circ Physiol 268:H1453–H1461

    CAS  Google Scholar 

  • Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD (1995c) Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest 96:1916–1926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson RS, Grassi B, Gavin TP, Haseler LJ, Tagore K, Roca J, Wagner PD (1999) Evidence of O2 supply-dependent \( \dot{V}\hbox{O}_{2\text{max} } \) in the exercise-trained human quadriceps. J Appl Physiol 86:1048–1053

    CAS  PubMed  Google Scholar 

  • Richardson RS, Newcomer SC, Noyszewski EA (2001) Skeletal muscle intracellular PO 2 assessed by myoglobin desaturation: response to graded exercise. J Appl Physiol 91:2679–2685

    CAS  PubMed  Google Scholar 

  • Roach RC, Koskolou MD, Calbet JA, Saltin B (1999) Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. Am J Physiol Heart Circ Physiol 276:H438–H445

    CAS  Google Scholar 

  • Robertson EY, Saunders PU, Pyne DB, Gore CJ, Anson JM (2010) Effectiveness of intermittent training in hypoxia combined with live high/train low. Eur J Appl Physiol 110:379–387

    PubMed  Google Scholar 

  • Robinson S (1938) Experimental studies of physical fitness in relation to age. Arbeitphysiol 10:251–323

    Google Scholar 

  • Robinson S, Edwards HT, Dill DB (1937) New records in human power. Science 85:409–410

    CAS  PubMed  Google Scholar 

  • Robinson S, Dill DB, Tzankoff SP, Wagner JA, Robinson RD (1975) Longitudinal studies of aging in 37 men. J Appl Physiol 38:263–267

    CAS  PubMed  Google Scholar 

  • Robinson S, Dill DB, Robinson RD, Tzankoff SP, Wagner JA (1976) Physiological aging of champion runners. J Appl Physiol 41:46–51

    CAS  PubMed  Google Scholar 

  • Roca J, Hogan MC, Story D, Bebout DE, Haab P, Gonzalez R, Ueno O, Wagner PD (1989) Evidence for tissue diffusion limitation of \( \dot{V}\hbox{O}_{2\text{max} } \) in normal humans. J Appl Physiol 67:291–299

    CAS  PubMed  Google Scholar 

  • Roca J, Agusti AG, Alonso A, Poole DC, Viegas C, Barbera JA, Rodriguez-Roisin R, Ferrer A, Wagner PD (1992) Effects of training on muscle O2 transport at \( \dot{V}\hbox{O}_{2\text{max} } \). J Appl Physiol 73:1067–1076

    CAS  PubMed  Google Scholar 

  • Rode A, Shephard RJ (1971) Cardio-respiratory fitness of an artic community. J Appl Physiol 31:519–526

    CAS  PubMed  Google Scholar 

  • Rode A, Shephard RJ (1984) Ten years of “civilization” fitness of Canadian Inuit. J Appl Physiol 56:1472–1477

    CAS  PubMed  Google Scholar 

  • Rodríguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Gore CJ, Levine BD (2007) Performance of runners and swimmers after four weeks of intermittent hypobaric hypoxic exposure plus sea level training. J Appl Physiol 103:1523–1535

    PubMed  Google Scholar 

  • Roels B, Bentley DJ, Coste O, Mercier J, Millet GP (2007) Effects of intermittent hypoxic training on cycling performance in well-trained athletes. Eur J Appl Physiol 101:359–368

    PubMed  Google Scholar 

  • Rogers MA, Hagberg JM, Martin WH 3rd, Ehsani AA, Holloszy JO (1990) Decline in \( \dot{V}\hbox{O}_{2\text{max} } \) with aging in master athletes and sedentary men. J Appl Physiol 68:2195–2199

    CAS  PubMed  Google Scholar 

  • Roi GS, Giacometti M, von Duvillard SP (1999) Marathons in altitude. Med Sci Sports Exerc 31:723–728

    CAS  PubMed  Google Scholar 

  • Rossiter HB, Ward SA, Kowalchuk JM, Howe FA, Griffiths JR, Whipp BJ (2001) Effects of prior exercise on oxygen uptake and phosphocreatine kinetics during high-intensity knee-extension exercise in humans. J Physiol 537:291–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159

    CAS  PubMed  Google Scholar 

  • Rowell LB, Saltin B, Kiens B, Christensen NJ (1986) Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? Am J Physiol Heart Circ Physiol 251:H1038–H1044

    CAS  Google Scholar 

  • Rusko HK (1992) Development of aerobic power in relation to age and training in cross-country skiers. Med Sci Sports Exerc 24:1040–1047

    CAS  PubMed  Google Scholar 

  • Russell G, Gore CJ, Ashenden MJ, Parisotto R, Hahn AG (2002) Effects of prolonged low doses of recombinant human erythropoietin during submaximal and maximal exercise. Eur J Appl Physiol 86:442–449

    CAS  PubMed  Google Scholar 

  • Saltin B (1977) The interplay between peripheral and central factors in the adaptive response to exercise and training. Ann N Y Acad Sci 301:224–231

    CAS  PubMed  Google Scholar 

  • Saltin B, Åstrand PO (1967) Maximal oxygen uptake in athletes. J Appl Physiol 23:353–358

    CAS  PubMed  Google Scholar 

  • Saltin B, Rowell LB (1980) Functional adaptations to physical activity and inactivity. Fed Proc 39:1506–1513

    CAS  PubMed  Google Scholar 

  • Saltin B, Strange S (1992) Maximal oxygen uptake: “old” and “new” arguments for a cardiovascular limitation. Med Sci Sports Exerc 24:30–37

    CAS  PubMed  Google Scholar 

  • Saltin B, Blomqvist CG, Mitchell RC, Johnson RL, Wildenthal K, Chapman CB (1968) Response to exercise after bed rest and after training. Circulation 38(Suppl 7):1–78

    Google Scholar 

  • Saltin B, Nazar K, Costill DL, Stein E, Jansson E, Essén B, Gollnick PD (1976) The nature of the training response: peripheral and central adaptations to one-legged exercise. Acta Physiol Scand 96:289–305

    CAS  PubMed  Google Scholar 

  • Saltin B, Larsen H, Terrados N, Bangsbo J, Bak T, Kim CK, Svedenhag J, Rolf CJ (1995) Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand J Med Sci Sports 5:209–221

    CAS  PubMed  Google Scholar 

  • Sanada K, Kuchiki T, Miyachi M, McGrath K, Higuchi M, Ebashi H (2007) Effects of age on ventilatory threshold and peak oxygen uptake normalised for regional skeletal muscle mass in Japanese men and women aged 20–80 years. Eur J Appl Physiol 99:475–483

    PubMed  Google Scholar 

  • Sawka MN, Young AJ, Muza SR, Gonzalet RR, Pandolf KB (1987) Erythrocyte reinfusion and maximal aerobic power. J Am Med Ass 257:1496–1499

    CAS  Google Scholar 

  • Schaffartzik W, Barton ED, Poole DC, Tsukimoto K, Hogan MC, Bebout DE, Wagner PD (1993) Effect of reduced hemoglobin concentration on leg oxygen uptake during maximal exercise in humans. J Appl Physiol 75:491–498

    CAS  PubMed  Google Scholar 

  • Scheuer J, Tipton CM (1977) Cardiovascular adaptations to physical training. Annu Rev Physiol 39:221–251

    CAS  PubMed  Google Scholar 

  • Secher N, Ruberg-Larsen H, Binkhorst RA, Bonde-Petersen F (1974) Maximal oxygen uptake during arm cranking and combined arm plus leg exercise. J Appl Physiol 36:515–518

    CAS  PubMed  Google Scholar 

  • Seene T, Kaasik P, Alev K (2011) Muscle protein turnover in endurance training: a review. Int J Sports Med 32:905–911

    CAS  PubMed  Google Scholar 

  • Shephard RJ (1969) A non-linear solution of the oxygen conductance equation: applications to performance at sea level and at an altitude of 7,350 ft. Int Z Angew Physiol 27:212–225

    CAS  PubMed  Google Scholar 

  • Sloth M, Sloth D, Overgaard K, Dalgas U (2013) Effects of sprint interval training on \( \dot{V}\hbox{O}_{2\text{max} } \) and aerobic exercise performance: a systematic review and meta-analysis. Scand J Med Sci Sports 23:341–352

    Google Scholar 

  • Smorawinski J, Nazar K, Kaciuba-Uscilko H, Kaminska E, Cybulski G, Kodrzycka A, Bicz B, Greenleaf JE (2001) Effects of 3-day bed rest on physiological responses to graded exercise in athletes and sedentary men. J Appl Physiol 91:249–257

    CAS  PubMed  Google Scholar 

  • Sonetti DA, Wetter TJ, Pegelow DF, Dempsey JA (2001) Effects of respiratory muscle training versus placebo on endurance exercise performance. Respir Physiol Neurobiol 127:185–199

    CAS  Google Scholar 

  • Spaak J, Montmerle S, Sundblad P, Linnarsson D (2005) Long-term bed rest-induced reductions in stroke volume during rest and exercise: cardiac dysfunction vs. volume depletion. J Appl Physiol 98:648–654

    PubMed  Google Scholar 

  • Spriet LL, Gledhill N, Froese AB, Wilkes DL (1986) Effect of graded erythrocythemia on cardiovascular and metabolic responses to exercise. J Appl Physiol 61:1942–1948

    CAS  PubMed  Google Scholar 

  • Steinacker JM, Liu Y, Böning D, Halder A, Maassen N, Thomas A, Stauch M (1996) Lung diffusion capacity, oxygen uptake, cardiac output and oxygen transport during exercise before and after an Himalayan expedition. Eur J Appl Physiol 74:187–193

    CAS  Google Scholar 

  • Stray-Gundersen J, Levine BD (2008) Live high, train low at natural altitude. Scand J Med Sci Sports 18(Suppl 1):21–28

    PubMed  Google Scholar 

  • Stray-Gundersen J, Chapman RF, Levine BD (2001) “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol 91:1113–1120

    CAS  PubMed  Google Scholar 

  • Stremel RW, Convertino VA, Bernauer EM, Greenleaf JE (1976) Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest. J Appl Physiol 41:905–909

    CAS  PubMed  Google Scholar 

  • Strømme FB, Ingjer F, Meen HD (1977) Assessment of maximal aerobic power in specifically trained athletes. J Appl Physiol 42:833–837

    PubMed  Google Scholar 

  • Talbot LA, Metter EJ, Fleg JL (2000) Leisure-time physical activities and their relationship to cardiorespiratory fitness in healthy men and women 18–95 years old. Med Sci Sports Exerc 32:417–425

    CAS  PubMed  Google Scholar 

  • Tam E, Rossi H, Moia C, Berardelli C, Rosa G, Capelli C, Ferretti G (2012) Energetics of running in top-level marathon runners from Kenya. Eur J Appl Physiol 112:3797–3806

    PubMed  Google Scholar 

  • Tanabe N, Todoran TM, Zenk GM, Bunton BR, Wagner WW Jr, Presson RG Jr (1998) Perfusion heterogeneity in the pulmonary acinus. J Appl Physiol 84:933–938

  • Taunton JE, Banister EW, Patrick TR, Ofordsag P, Duncan WR (1970) Physical work capacity in hyperbaric environments and conditions of hyperoxia. J Appl Physiol 28:421–427

    CAS  PubMed  Google Scholar 

  • Taylor CR (1987) Structural and functional limits to oxidative metabolism: insights from scaling. Annu Rev Physiol 49:135–146

    CAS  PubMed  Google Scholar 

  • Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. I. Problem and strategy. Respir Physiol 44:1–10

    CAS  PubMed  Google Scholar 

  • Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen uptake as an objective measure of cardiorespiratory performance. J Appl Physiol 8:73–80

    CAS  PubMed  Google Scholar 

  • Tesch PA, Karlsson J (1985) Muscle fiber types and size in trained and untrained muscles of elite athletes. J Appl Physiol 59:1716–1720

    CAS  PubMed  Google Scholar 

  • Thomsen JJ, Rentsch RL, Robach P, Calbet JAL, Boushel R, Rasmussen P, Juel C, Lundby C (2007) Prolonged administration of recombinant human erythropoietin increases submaximal performance more than maximal aerobic power. Eur J Appl Physiol 101:481–486

    CAS  PubMed  Google Scholar 

  • Thomson JM, Stone JA, Ginsburg AD, Hamilton P (1982) Oxygen transport during exercise following blood reinfusion. J Appl Physiol 53:1213–1219

    CAS  PubMed  Google Scholar 

  • Trappe T, Trappe S, Lee G, Widrick J, Fitts R, Costill D (2006) Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J Appl Physiol 100:951–957

    PubMed  Google Scholar 

  • Turner DL, Hoppeler H, Noti C, Gurtner HP, Gerber H, Schena F, Kayser B, Ferretti G (1993) Limitations to VO2max in humans after blood retransfusion. Respir Physiol 92:329–341

    CAS  PubMed  Google Scholar 

  • Valli G, Cogo A, Passino C, Bonardi D, Morici G, Fasano V, Agnesi M, Bernardi L, Ferrazza AM, Ward SA, Palange P (2011) Exercise intolerance at high altitude (5050 m): critical power and W’. Respir Physiol Neurobiol 177:333–341

  • Vanderburgh PM, Katch FI (1996) Ratio scaling of \( \dot{V}\hbox{O}_{2\text{max} } \) penalizes women with larger percent body fat, not lean body mass. Med Sci Sports Exerc 28:1204–1208

    CAS  PubMed  Google Scholar 

  • Vanhatalo A, Jones AM (2009) Influence of prior sprint exercise on the parameters of the all-out critical power test in men. Exp Physiol 94:255–263

    PubMed  Google Scholar 

  • Veicsteinas A, Samaja M, Gussoni M, Cerretelli P (1984) Blood O2 affinity and maximal O2 consumption in elite bicycle racers. J Appl Physiol 57:52–58

    CAS  PubMed  Google Scholar 

  • Ventura N, Hoppeler H, Seiler R, Binggeli A, Mullis P, Vogt M (2003) The response of trained athletes to six weeks of endurance training in hypoxia or normoxia. Int J Sports Med 24:166–172

    CAS  PubMed  Google Scholar 

  • Vogel JA, Gleser MA (1972) Effect of carbon monoxide on oxygen transport during exercise. J Appl Physiol 32(234–239):287

    Google Scholar 

  • Vogel JA, Hansen JE, Harris CW (1967) Cardiovascular responses in man during exhaustive work at sea level and high altitude. J Appl Physiol 23:531–539

    CAS  PubMed  Google Scholar 

  • Vogiatzis I, Zakynthinos S, Boushel R, Athanasopoulos D, Guenette JA, Wagner H, Roussos C, Wagner PD (2008) The contribution of intrapulmonary shunts to the alveolar-to-arterial oxygen difference during exercise is very small. J Physiol 586:2381–2391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner PD (1992) Gas exchange and peripheral diffusion limitation. Med Sci Sports Exerc 24:54–58

    CAS  PubMed  Google Scholar 

  • Wagner PD (1993) Algebraic analysis of the determinants of \( \dot{V}\hbox{O}_{2\text{max} } \). Respir Physiol 93:221–237

    CAS  PubMed  Google Scholar 

  • Wagner PD (1995) Muscle O2 transport and O2 dependent control of metabolism. Med Sci Sports Exerc 27:47–53

    CAS  PubMed  Google Scholar 

  • Wagner PD (1996a) Determinants of maximal oxygen transport and utilization. Annu Rev Physiol 58:21–50

    CAS  PubMed  Google Scholar 

  • Wagner PD (1996b) A theoretical analysis of factors determining \( \dot{V}\hbox{O}_{2\text{max} } \) at sea level and altitude. Respir Physiol 106:329–343

    CAS  PubMed  Google Scholar 

  • Wagner PD (2010) The physiological basis of reduced \( \dot{V}\hbox{O}_{2\text{max} } \) in operation everest II. High Alt Med Biol 11:209–215

    PubMed  Google Scholar 

  • Wagner PD (2012) Muscle intracellular oxygenation during exercise: optimization for oxygen transport, metabolism, and adaptive change. Eur J Appl Physiol 112:1–8

    CAS  PubMed  Google Scholar 

  • Wagner PD, Gillespie JR, Landgren GL, Fedde MR, Jones BW, DeBowes RM, Pieschl RL, Erickson HH (1989) Mechanism of exercise-induced hypoxemia in horses. J Appl Physiol 66:1227–1233

    CAS  PubMed  Google Scholar 

  • Wagner PD, Erickson BK, Seaman J, Kubo K, Hiraga A, Kai M, Yamaya Y (1996) Effects of altered FIO 2 on maximum \( \dot{V}\hbox{O}_{2} \) in the horse. Respir Physiol 105:123–134

    CAS  PubMed  Google Scholar 

  • Wehrlin JP, Hallén J (2006) Linear decrease in \( \dot{V}\hbox{O}_{2\text{max} } \) and performance with increasing altitude in endurance athletes. Eur J Appl Physiol 96:404–412

    PubMed  Google Scholar 

  • Weibel E (1984) The pathway for oxygen. Harvard University Press, Boston

    Google Scholar 

  • Weibel ER (1987) Scaling of structural and functional variables in the respiratory system. Annu Rev Physiol 49:147–159

    CAS  PubMed  Google Scholar 

  • Welch HG, Pedersen PK (1981) Measurement of metabolic rate in hyperoxia. J Appl Physiol 51:725–731

    CAS  PubMed  Google Scholar 

  • West JB (1983) Climbing Mt. Everest without oxygen: an analysis of maximal exercise during extreme hypoxia. Respir Physiol 52:265–279

    CAS  PubMed  Google Scholar 

  • West JB, Boyer SJ, Graber DJ, Hackett PH, Maret KH, Milledge JS, Peters RM, Pizzo CJ, Samaja M, Sarnquist FH, Schoene RB, Winslow RM (1983) Maximal exercise at extreme altitude on Mount Everest. J Appl Physiol 55:688–698

    CAS  PubMed  Google Scholar 

  • Weston AR, Mbambo Z, Myburgh KH (2000) Running economy of African and Caucasians distance runners. Med Sci Sports Exerc 32:1130–1134

    CAS  PubMed  Google Scholar 

  • Whipp BJ (1994) The bioenergetic and gas exchange basis of exercise testing. Clin Chest Med 15:173–192

    CAS  PubMed  Google Scholar 

  • Wilhite DP, Mickleborough TD, Laymon AS, Chapman RF (2013) Increases in \( \dot{V}\hbox{O}_{2\text{max} } \) with “live high-train low” altitude training: role of ventilatory acclimatization. Eur J Appl Physiol 113:419–426

    PubMed  Google Scholar 

  • Wilmore JH, Stanforth PR, Gagnon J, Rice T, Mandel S, Leon AS, Rao DC, Skinner JS, Bouchard C (2001) Cardiac output and stroke volume changes with endurance training: the HERITAGE Family Study. Med Sci Sports Exerc 33:99–106

    CAS  PubMed  Google Scholar 

  • Woodson RD, Wills RE, Lenfant C (1978) Effect of acute and established anemia on O2 transport at rest, submaximal and maximal work. J Appl Physiol 44:36–43

    CAS  PubMed  Google Scholar 

  • Woorons X, Mollard P, Lamberto C, Letournel M, Richalet JP (2005) Effect of acute hypoxia on maximal exercise in trained and sedentary women. Med Sci Sports Exerc 37:147–154

    PubMed  Google Scholar 

  • Wyndham CH, Strydom NB, Morrison JF, Peter J, Williams CG, Bredell GAG, Joffe A (1963) Differences between ethnic groups in physical working capacity. J Appl Physiol 18:361–366

    CAS  PubMed  Google Scholar 

  • Zhang YY, Johnson MC 2nd, Chow N, Wasserman K (1991) Effect of exercise testing protocol on parameters of aerobic function. Med Sci Sports Exerc 23:625–630

    CAS  PubMed  Google Scholar 

  • Zoladz JA, Rademaker ACHJ, Sargeant AJ (1995) Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans. J Physiol 488:211–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zumstein A, Mathieu O, Howald H, Hoppeler H (1983) Morphometric analysis of the capillary supply in skeletal muscles of trained and untrained subjects. Its limitations in muscle biopsies. Pflügers Arch 397:277–283

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Swiss National Science Foundation Grant 32003B_143427, Switzerland, and by the Health&Wealth@Unibs strategic plan, University of Brescia, Italy. I thank all the friends and colleagues with whom I had joyful and enriching discussions on the matters treated in this review, all the collaborators from Brescia and Geneva who had been involved in the 20-year-long experimental work supporting this paper. My admiration goes to Pietro Enrico di Prampero and Peter Wagner, who demonstrated so vividly that research consists mainly of innovative thinking, and who traced the way along which I have been walking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Ferretti.

Additional information

Communicated by Nigel A.S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferretti, G. Maximal oxygen consumption in healthy humans: theories and facts. Eur J Appl Physiol 114, 2007–2036 (2014). https://doi.org/10.1007/s00421-014-2911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2911-0

Keywords

Navigation