Skip to main content
Log in

Effects of beta-alanine supplementation and interval training on physiological determinants of severe exercise performance

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Introduction

We aimed to manipulate physiological determinants of severe exercise performance. We hypothesized that (1) beta-alanine supplementation would increase intramuscular carnosine and buffering capacity and dampen acidosis during severe cycling, (2) that high-intensity interval training (HIT) would enhance aerobic energy contribution during severe cycling, and (3) that HIT preceded by beta-alanine supplementation would have greater benefits.

Methods

Sixteen active men performed incremental cycling tests and 90-s severe (110 % peak power) cycling tests at three time points: before and after oral supplementation with either beta-alanine or placebo, and after an 11-days HIT block (9 sessions, 4 × 4 min), which followed supplementation. Carnosine was assessed via MR spectroscopy. Energy contribution during 90-s severe cycling was estimated from the O2 deficit. Biopsies from m. vastus lateralis were taken before and after the test.

Results

Beta-alanine increased leg muscle carnosine (32 ± 13 %, d = 3.1). Buffering capacity and incremental cycling were unaffected, but during 90-s severe cycling, beta-alanine increased aerobic energy contribution (1.4 ± 1.3 %, d = 0.5), concurrent with reduced O2 deficit (−5.0 ± 5.0 %, d = 0.6) and muscle lactate accumulation (−23 ± 30 %, d = 0.9), while having no effect on pH. Beta-alanine also enhanced motivation and perceived state during the HIT block. There were no between-group differences in adaptations to the training block, namely increased buffering capacity (+7.9 ± 11.9 %, p = 0.04, d = 0.6, n = 14) and glycogen storage (+30 ± 47 %, p = 0.04, d = 0.5, n = 16).

Conclusions

Beta-alanine did not affect buffering considerably, but has beneficial effects on severe exercise metabolism as well as psychological parameters during intense training phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe H (2000) Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc) 65:757–765

    CAS  Google Scholar 

  • Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, Derave W (2009) Carnosine loading and washout in human skeletal muscles. J Appl Physiol 106:837–842

    Article  CAS  PubMed  Google Scholar 

  • Baguet A, Bourgois J, Vanhee L, Achten E, Derave W (2010a) Important role of muscle carnosine in rowing performance. J Appl Physiol 109:1096–1101

    Article  PubMed  Google Scholar 

  • Baguet A, Koppo K, Pottier A, Derave W (2010b) Beta-alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur J Appl Physiol 108:495–503

    Article  CAS  PubMed  Google Scholar 

  • Bangsbo J (1998) Quantification of anaerobic energy production during intense exercise. Med Sci Sports Exerc 30:47–52

    Article  CAS  PubMed  Google Scholar 

  • Bangsbo J, Gollnick PD, Graham TE, Juel C, Kiens B, Mizuno M, Saltin B (1990) Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J Physiol 422:539–559

    CAS  PubMed  Google Scholar 

  • Baslow MH (1998) Function of the N-acetyl-l-histidine system in the vertebrate eye. Evidence in support of a role as a molecular water pump. J Mol Neurosci 10:193–208

    Article  CAS  PubMed  Google Scholar 

  • Begum G, Cunliffe A, Leveritt M (2005) Physiological role of carnosine in contracting muscle. Int J Sport Nutr Exerc Metab 15:493–514

    CAS  PubMed  Google Scholar 

  • Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616

    Article  CAS  PubMed  Google Scholar 

  • Billat VL, Mille-Hamard L, Demarle A, Koralsztein JP (2002) Effect of training in humans on off- and on-transient oxygen uptake kinetics after severe exhausting intensity runs. Eur J Appl Physiol 87:496–505

    Article  CAS  PubMed  Google Scholar 

  • Billat V, Hamard L, Koralsztein JP, Morton RH (2009) Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run. J Appl Physiol 107:478–487

    Article  PubMed  Google Scholar 

  • Billeter R, Weber H, Lutz H, Howald H, Eppenberger HM, Jenny E (1980) Myosin types in human skeletal muscle fibers. Histochemistry 65:249–259

    Article  CAS  PubMed  Google Scholar 

  • Bishop D, Edge J, Goodman C (2004) Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol 92:540–547

    Article  PubMed  Google Scholar 

  • Bishop D, Edge J, Thomas C, Mercier J (2008) Effects of high-intensity training on muscle lactate transporters and postexercise recovery of muscle lactate and hydrogen ions in women. Am J Physiol Regul Integr Comp Physiol 295:R1991–R1998

    Article  CAS  PubMed  Google Scholar 

  • Bishop DJ, Thomas C, Moore-Morris T, Tonkonogi M, Sahlin K, Mercier J (2010) Sodium bicarbonate ingestion prior to training improves mitochondrial adaptations in rats. Am J Physiol Endocrinol Metab 299:E225–E233

    CAS  PubMed  Google Scholar 

  • Boldyrev AA (2000) Problems and perspectives in studying the biological role of carnosine. Biochemistry (Mosc) 65:751–756

    CAS  Google Scholar 

  • Boldyrev AA (2012) Carnosine: new concept for the function of an old molecule. Biochemistry (Mosc) 77:313–326

    Article  CAS  Google Scholar 

  • Breil FA, Weber SN, Koller S, Hoppeler H, Vogt M (2010) Block training periodization in alpine skiing: effects of 11-day HIT on VO(2max) and performance. Eur J Appl Physiol 109:1077–1086

    Article  PubMed  Google Scholar 

  • Carr AJ, Hopkins WG, Gore CJ (2011) Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports Med 41:801–814

    Article  PubMed  Google Scholar 

  • de Koning JJ, Foster C, Lampen J, Hettinga F, Bobbert MF (2005) Experimental evaluation of the power balance model of speed skating. J Appl Physiol 98:227–233

    Article  PubMed  Google Scholar 

  • Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P (2003) Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol 89:281–288

    Article  CAS  PubMed  Google Scholar 

  • Demarle AP, Slawinski JJ, Laffite LP, Bocquet VG, Koralsztein JP, Billat VL (2001) Decrease of O(2) deficit is a potential factor in increased time to exhaustion after specific endurance training. J Appl Physiol 90:947–953

    CAS  PubMed  Google Scholar 

  • Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E (2007) Beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol 103:1736–1743

    Article  CAS  PubMed  Google Scholar 

  • Duffield R, Edge J, Bishop D (2006) Effects of high-intensity interval training on the VO2 response during severe exercise. J Sci Med Sport 9:249–255

    Article  PubMed  Google Scholar 

  • Dutka TL, Lamb GD (2004) Effect of carnosine on excitation-contraction coupling in mechanically-skinned rat skeletal muscle. J Muscle Res Cell Motil 25:203–213

    Article  CAS  PubMed  Google Scholar 

  • Dutka TL, Lamboley CR, McKenna MJ, Murphy RM, Lamb GD (2012) Effects of carnosine on contractile apparatus Ca(2)(+) sensitivity and sarcoplasmic reticulum Ca(2)(+) release in human skeletal muscle fibers. J Appl Physiol 112:728–736

    Article  CAS  PubMed  Google Scholar 

  • Edge J, Bishop D, Goodman C (2006) The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol 96:97–105

    Article  CAS  PubMed  Google Scholar 

  • Edgerton VR, Smith JL, Simpson DR (1975) Muscle fibre type populations of human leg muscles. Histochem J 7:259–266

    Article  CAS  PubMed  Google Scholar 

  • Everaert I, Stegen S, Vanheel B, Taes Y, Derave W (2013) Effect of beta-alanine and carnosine supplementation on muscle contractility in mice. Med Sci Sports Exerc 45:43–51

    Article  CAS  PubMed  Google Scholar 

  • Ferguson RA (2010) Limitations to performance during alpine skiing. Exp Physiol 95:404–410

    Article  PubMed  Google Scholar 

  • Foster C, Florhaug JA, Franklin J, Gottschall L, Hrovatin LA, Parker S, Doleshal P, Dodge C (2001) A new approach to monitoring exercise training. J Strength Cond Res 15:109–115

    CAS  PubMed  Google Scholar 

  • Gibala MJ, McGee SL (2008) Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev 36:58–63

    Article  PubMed  Google Scholar 

  • Girard O, Mendez-Villanueva A, Bishop D (2011) Repeated-sprint ability: part I: factors contributing to fatigue. Sports Med 41:673–694

    Article  PubMed  Google Scholar 

  • Gross M, Swensen T, King D (2007) Nonconsecutive- versus consecutive-day high-intensity interval training in cyclists. Med Sci Sports Exerc 39:1666–1671

    Article  PubMed  Google Scholar 

  • Hammer MA, Baltz JM (2003) Beta-alanine but not taurine can function as an organic osmolyte in preimplantation mouse embryos cultured from fertilized eggs. Mol Reprod Dev 66:153–161

    Article  CAS  PubMed  Google Scholar 

  • Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA (2006) The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30:279–289

    Article  CAS  PubMed  Google Scholar 

  • Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39:665–671

    Article  PubMed  Google Scholar 

  • Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2007) Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 32:225–233

    Article  CAS  PubMed  Google Scholar 

  • Hoffman J, Ratamess NA, Ross R, Kang J, Magrelli J, Neese K, Faigenbaum AD, Wise JA (2008a) Beta-alanine and the hormonal response to exercise. Int J Sports Med 29:952–958

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JR, Ratamess NA, Faigenbaum AD, Ross R, Kang J, Stout JR, Wise JA (2008b) Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr Res 28:31–35

    Article  CAS  PubMed  Google Scholar 

  • Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–13

    Article  PubMed  Google Scholar 

  • Jackson AS, Pollock ML (1978) Generalized equations for predicting body density of men. Br J Nutr 40:497–504

    Article  CAS  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc 42:1876–1890

    Article  PubMed  Google Scholar 

  • Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT, Smith M, Wise JA (2008) The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids 34:547–554

    Article  CAS  PubMed  Google Scholar 

  • Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG (2002) Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc 34:1801–1807

    Article  PubMed  Google Scholar 

  • Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic Press, New York

    Google Scholar 

  • Märzendorfer PJ (2011) Reliabilität der EPOC-O2-Defizit Relation und des totaled Energieverbrauchs bei einem 90 sek supramaximalen Leistungstest & Funktionelle Aspekte und Verträglichkeit einer sechswöchigen Beta-Alanin Supplementierung. Biology. ETH Zürich

  • Messonnier L, Kristensen M, Juel C, Denis C (2007) Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. J Appl Physiol 102:1936–1944

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Furuse M (2010) The impact of taurine- and beta-alanine-supplemented diets on behavioral and neurochemical parameters in mice: antidepressant versus anxiolytic-like effects. Amino Acids 39:427–434

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir MS, Reyngoudt H, De Deene Y, Sazak HS, Fieremans E, Delputte S, D’Asseler Y, Derave W, Lemahieu I, Achten E (2007) Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy. Phys Med Biol 52:6781–6794

    Article  CAS  PubMed  Google Scholar 

  • Parkhouse WS, McKenzie DC (1984) Possible contribution of skeletal muscle buffers to enhanced anaerobic performance: a brief review. Med Sci Sports Exerc 16:328–338

    Article  CAS  PubMed  Google Scholar 

  • Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316:1236–1238

    Article  CAS  PubMed  Google Scholar 

  • Perry CG, Heigenhauser GJ, Bonen A, Spriet LL (2008) High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab 33:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Rauch LH, Rodger I, Wilson GR, Belonje JD, Dennis SC, Noakes TD, Hawley JA (1995) The effects of carbohydrate loading on muscle glycogen content and cycling performance. Int J Sport Nutr 5:25–36

    CAS  PubMed  Google Scholar 

  • Rockwell MS, Rankin JW, Dixon H (2003) Effects of muscle glycogen on performance of repeated sprints and mechanisms of fatigue. Int J Sport Nutr Exerc Metab 13:1–14

    CAS  PubMed  Google Scholar 

  • Sale C, Saunders B, Hudson S, Wise JA, Harris RC, Sunderland CD (2011) Effect of beta-alanine plus sodium bicarbonate on high-intensity cycling capacity. Med Sci Sports Exerc 43:1972–1978

    CAS  PubMed  Google Scholar 

  • Seiler KS, Kjerland GO (2006) Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports 16:49–56

    Article  PubMed  Google Scholar 

  • Skein M, Duffield R, Kelly BT, Marino FE (2012) The effects of carbohydrate intake and muscle glycogen content on self-paced intermittent-sprint exercise despite no knowledge of carbohydrate manipulation. Eur J Appl Physiol 112:2859–2870

    Article  CAS  PubMed  Google Scholar 

  • Smith AE, Walter AA, Graef JL, Kendall KL, Moon JR, Lockwood CM, Fukuda DH, Beck TW, Cramer JT, Stout JR (2009) Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Soc Sports Nutr 6:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Stellingwerff T, Anwander H, Egger A, Buehler T, Kreis R, Decombaz J, Boesch C (2012) Effect of two beta-alanine dosing protocols on muscle carnosine synthesis and washout. Amino Acids 42:2461–2472

    Article  CAS  PubMed  Google Scholar 

  • Stepto NK, Hawley JA, Dennis SC, Hopkins WG (1999) Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc 31:736–741

    Article  CAS  PubMed  Google Scholar 

  • Stirling JR, Zakynthinaki MS, Billat V (2008) Modeling and analysis of the effect of training on VO2 kinetics and anaerobic capacity. Bull Math Biol 70:1348–1370

    Article  CAS  PubMed  Google Scholar 

  • Stolen T, Chamari K, Castagna C, Wisloff U (2005) Physiology of soccer: an update. Sports Med 35:501–536

    Article  PubMed  Google Scholar 

  • Storen O, Bratland-Sanda S, Haave M, Helgerud J (2012) Improved VO2max and time trial performance with more high aerobic intensity interval training and reduced training volume: a case study on an elite national cyclist. J Strength Cond Res 26:2705–2711

    Article  PubMed  Google Scholar 

  • Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, Harris RC, O’Kroy J (2007a) Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 32:381–386

    Article  CAS  PubMed  Google Scholar 

  • Stout JR, Sue Graves B, Cramer JT, Goldstein ER, Costa PB, Smith AE, Walter AA (2007b) Effects of creatine supplementation on the onset of neuromuscular fatigue threshold and muscle strength in elderly men and women (64–86 years). J Nutr Health Aging 11:459–464

    CAS  PubMed  Google Scholar 

  • Stvolinskii SL, Dobrota D, Mezeshova V, Liptai T, Pronaiova N, Zalibera L, Boldyrev AA (1992) Carnosine and anserine in working muscles–study using proton NMR spectroscopy. Biokhimiia 57:1317–1323

    CAS  PubMed  Google Scholar 

  • Tomonaga S, Yamane H, Onitsuka E, Yamada S, Sato M, Takahata Y, Morimatsu F, Furuse M (2008) Carnosine-induced antidepressant-like activity in rats. Pharmacol Biochem Behav 89:627–632

    Article  CAS  PubMed  Google Scholar 

  • Van Thienen R, Van Proeyen K, Vanden Eynde B, Puype J, Lefere T, Hespel P (2009) Beta-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc 41:898–903

    Article  PubMed  Google Scholar 

  • Vanhatalo A, Doust JH, Burnley M (2008) A 3-min all-out cycling test is sensitive to a change in critical power. Med Sci Sports Exerc 40:1693–1699

    Article  PubMed  Google Scholar 

  • Walter AA, Smith AE, Kendall KL, Stout JR, Cramer JT (2010) Six weeks of high-intensity interval training with and without beta-alanine supplementation for improving cardiovascular fitness in women. J Strength Cond Res 24:1199–1207

    Article  PubMed  Google Scholar 

  • Weber CL, Schneider DA (2002) Increases in maximal accumulated oxygen deficit after high-intensity interval training are not gender dependent. J Appl Physiol 92:1795–1801

    PubMed  Google Scholar 

  • Weibel ER (1979) Stereological methods, vol I: practical methods for biological morphometry. Academic Press, London

  • Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA (1997) Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol 75:7–13

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by research grants from the Swiss Federal Office of Sport (project 10-14) and the Swiss National Science Fund (project 320030_135743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micah Gross.

Additional information

Communicated by Klaas R. Westerterp/Håkan Westerblad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, M., Boesch, C., Bolliger, C.S. et al. Effects of beta-alanine supplementation and interval training on physiological determinants of severe exercise performance. Eur J Appl Physiol 114, 221–234 (2014). https://doi.org/10.1007/s00421-013-2767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2767-8

Keywords

Navigation