Skip to main content
Log in

Effects of recovery mode (active vs. passive) on performance during a short high-intensity interval training program: a longitudinal study

European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of this longitudinal study was to compare two recovery modes (active vs. passive) during a seven-week high-intensity interval training program (SWHITP) aimed to improve maximal oxygen uptake (\( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \)), maximal aerobic velocity (MAV), time to exhaustion (t lim) and time spent at a high percentage of \( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \), i.e., above 90 % (t90 \( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \)) and 95 % (t95 \( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \)) of \( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \). Twenty-four adults were randomly assigned to a control group that did not train (CG, n = 6) and two training groups: intermittent exercise (30 s exercise/30 s recovery) with active (IEA, n = 9) or passive recovery (IEP, n = 9). Before and after seven weeks with (IEA and IEP) or without (CG) high-intensity interval training (HIT) program, all subjects performed a maximal graded test to determine their \( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \) and MAV. Subsequently only the subjects of IEA and IEP groups carried out an intermittent exercise test consisting of repeating as long as possible 30 s intensive runs at 105 % of MAV alternating with 30 s active recovery at 50 % of MAV (IEA) or 30 s passive recovery (IEP). Within IEA and IEP, mean t lim and MAV significantly increased between the onset and the end of the SWHITP and no significant difference was found in t90 VO2max and t95 VO2max. Furthermore, before and after the SWHITP, passive recovery allowed a longer t lim for a similar time spent at a high percentage of VO2max. Finally, within IEA, but not in IEP, mean VO2max increased significantly between the onset and the end of the SWHITP both in absolute (p < 0.01) and relative values (p < 0.05). In conclusion, our results showed a significant increase in VO2max after a SWHITP with active recovery in spite of the fact that t lim was significantly longer (more than twice longer) with respect to passive recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Astrand I, Astrand PO, Christensen EH, Hedman R (1960) Intermittent muscular work. Acta Physiol Scand 48:448–453

    Article  PubMed  CAS  Google Scholar 

  • Bangsbo J, Graham T, Johansen L, Saltin B (1994) Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise. J Appl Physiol 77:1890–1895

    PubMed  CAS  Google Scholar 

  • Berg K (2003) Endurance training and performance in runners: research limitations and unanswered questions. Sports Med 33(1):59–73

    Article  PubMed  Google Scholar 

  • Billat VL, Bocquet V, Slawinski J, Laffite L, Demarle A, Chassaing P, Koralsztein JP (2000a) Effect of a prior intermittent run at v \( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \) on oxygen kinetics during an all-out severe run in humans. J Sports Med Phys Fitness 40(3):185–194

    PubMed  CAS  Google Scholar 

  • Billat VL, Flechet B, Petit B, Muriaux G, Koralsztein JP (1999) Interval training at \( \dot{V}{\text{O}}_{{ 2 {\text{max}}}} \) effects on aerobic performance and overtraining markers. Med Sci Sports Exerc 31:156–163

    Article  PubMed  CAS  Google Scholar 

  • Billat VL, Mille-Hamard L, Demarle A, Koralsztein JP (2002) Effect of training in humans on off- and on-transient oxygen uptake kinetics after severe exhausting intensity runs. Eur J Appl Physiol 87:496–505

    Article  PubMed  CAS  Google Scholar 

  • Billat VL, Slawinksi J, Bocquet V, Chassaing P, Demarle A, Koralsztein JP (2001) Very Short (15 s–15 s) Interval-Training around the critical velocity allows middle-aged runners to maintain VO2max for 14 minutes. Int J Sports Med 22:201–208

    Article  PubMed  CAS  Google Scholar 

  • Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein JP (2000b) Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 81:188–196

    Article  PubMed  CAS  Google Scholar 

  • Brandon LJ (1995) Physiological factors associated with middle distance running performance. Sports Med 19(4):268–277

    Article  PubMed  CAS  Google Scholar 

  • Burke J, Thayer R, Belcamino M (1994) Comparison of effects of two interval-training programs on lactate and ventilatory thresholds. Br J Sports Med 28:18–21

    Article  PubMed  CAS  Google Scholar 

  • Calvert T, Banister EW, Savage M et al (1976) A system model of the effects of training on physical performances. IEE Trans Syst Man Cybern smc 6:94–102

    Article  Google Scholar 

  • Carter H, Jones AM, Doust JH (1999) Effect of 6 weeks of endurance training on the lactate minimum speed. J Sports Sci 17:957–967

    Article  PubMed  CAS  Google Scholar 

  • Chidnok W, Dimenna FJ, Bailey SJ, Vanhatalo A, Morton RH, Wilkerson DP, Jones AM (2012) Exercise tolerance in intermittent cycling: application of the critical power concept. Med Sci Sports Exerc 44(5):966–976

    Article  PubMed  Google Scholar 

  • Daniels J, Scardina N (1984) Interval training and performance. Sports Med 1:327–334

    Article  PubMed  CAS  Google Scholar 

  • Denadai BS, Ortiz MJ, Greco CC, de Mello MT (2006) Interval training at 95 % and 100 % of the velocity at VO2max effects on aerobic physiological indexes and running performance. Appl Physiol Nutr Metab 31:737–743

    Article  PubMed  Google Scholar 

  • Dorado C, Sanchis-Moysi J, Calbet JA (2004) Effects of recovery mode on performance, O2 uptake, and O2 deficit during high-intensity intermittent exercise. Can J Appl Physiol 29(3):227–244

    Article  PubMed  Google Scholar 

  • Dupont G, Berthoin S (2004) Time spent at a high percentage of VO2max for short intermittent runs: active versus passive recovery. Can J Appl Physiol 29(Suppl):S3–S16

    Article  PubMed  Google Scholar 

  • Dupont G, Blondet N, Berthoin S (2003a) Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol 89:548–554

    Article  PubMed  Google Scholar 

  • Dupont G, Blondel N, Berthoin S (2003b) Time spent at VO2max a methodological issue. Int J Sports Med 24:291–297

    Article  PubMed  CAS  Google Scholar 

  • Dupont G, Blondel N, Lensel G, Berthoin S (2002) Critical velocity and time spent at a high level of VO2max for short intermittent runs at supramaximal velocities. Can J Appl Physiol 27(2):103–115

    Article  PubMed  Google Scholar 

  • Durnin J, Rahaman M (1967) The assessment of the amount of fat in the human body from measurements of skinfold thickness. Brit J Nutr 21:681–689

    Article  PubMed  CAS  Google Scholar 

  • Eddy DO, Sparks KL, Adelizi DA (1977) The effect of continuous and interval training in women and men. Eur J Appl Physiol 37:83–92

    Article  CAS  Google Scholar 

  • Franch J, Madsen K, Djurhuus MS, Pedersen PK (1998) Improved running economy following intensified training correlates with reduced ventilatory demands. Med Sci Sports Exerc 30(8):1250–1256

    Article  PubMed  CAS  Google Scholar 

  • Gibala MJ, McGee SL (2008) Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev 36(2):58–63

    Article  PubMed  Google Scholar 

  • Gorostiaga EM, Walter CB, Foster C, Hickson RC (1991) Uniqueness of interval and continuous training at the same maintained exercise intensity. Eur J Appl Physiol 63:101–107

    Article  CAS  Google Scholar 

  • Heubert R, Bocquet V, Koralsztein JP, Billat V (2003) Effet de 4 semaines d’entraînement sur le temps limite à VO2max. Can J Appl Physiol 28(5):705–724

    Article  Google Scholar 

  • Jones AM, Wilkerson DP, DiMenna FJ, Fulford J, Poole D (2008) Muscle metabolic responses to exercise above and below the ‘critical power’ assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol 294:R585–R593

    Article  PubMed  CAS  Google Scholar 

  • Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6(4):197–201

    Article  PubMed  CAS  Google Scholar 

  • Laursen PB, Jenkins DG (2002) The scientific basis for high-intensity interval training. Optimising training programmes and maximizing performance in highly trained endurance athletes. Sports Med 32(1):53–73

    Article  PubMed  Google Scholar 

  • Leger L, Boucher R (1980) An indirect continuous running multistage field test: the Université de Montréal track test. Can J Appl Sport Sci 5(2):77–84

    PubMed  CAS  Google Scholar 

  • McLaughlin JE, King GA, Howley ET, Bassett DR Jr, Ainsworth BE (2001) Validation of the COSMED K4 b2 portable metabolic system. Int J Sports Med 22:280–284

    Article  PubMed  CAS  Google Scholar 

  • Midgley AW, McNaughton LR, Wilkinson M (2006) Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners ? Empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med 36(2):117–132

    Article  PubMed  Google Scholar 

  • Millet GP, Candau R, Fattori P, Bignet F, Varray A (2003a) VO2max responses to different intermittent runs at velocity associated with VO2max. Can J Appl Physiol 28(3):410–423

    Article  PubMed  Google Scholar 

  • Millet GP, Libicz S, Borrani F, Fattori P, Bignet F, Candau R (2003b) Effects of increased intensity of intermittent training in runners with differing VO2max kinetics. Eur J Appl Physiol 90:50–57

    Article  PubMed  CAS  Google Scholar 

  • Noakes T (1991) The lore of running. Leisure Press Champaign, IL

    Google Scholar 

  • Pollock ML, Jackson AS, Pate RR (1980) Discriminant analysis of physiological differences between good and elite distance runners. Res Q Exerc Sport 51(3):521–532

    Article  PubMed  CAS  Google Scholar 

  • Smith TP, Mc Naughton LR, Marshall KJ (1999) Effects of 4-wk training using Vmax/Tmax on VO2max and performance in athletes. Med Sci Sports Exerc 31:892–896

    Article  PubMed  CAS  Google Scholar 

  • Spiro SG (1977) Exercise testing in clinical medicine. Br J Dis Chest 71:145–172

    Article  PubMed  CAS  Google Scholar 

  • Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto K (1996) Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 28:1327–1330

    Article  PubMed  CAS  Google Scholar 

  • Tardieu-Berger M, Thevenet D, Zouhal H, Prioux J (2004) Effects of active recovery between series on performance during an intermittent exercise model in young endurance athletes. Eur J Appl Physiol 93(1–2):145–152

    Article  PubMed  Google Scholar 

  • Taylor H, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardiorespiratory performance. J Appl Physiol 8:73–80

    PubMed  CAS  Google Scholar 

  • Thevenet D, Leclair E, Tardieu-Berger M, Berthoin S, Regueme S, Prioux J (2008) Influence of recovery intensity on time spent at maximal oxygen uptake during an intermittent session in young, endurance-trained athletes. J Sports Sci 26(12):1313–1321

    Article  PubMed  Google Scholar 

  • Thevenet D, Tardieu-Berger M, Berthoin S, Prioux J (2007a) Influence of recovery mode (passive vs. active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. Eur J Appl Physiol 99(2):133–142

    Article  PubMed  Google Scholar 

  • Thevenet D, Tardieu M, Zouhal H, Jacob C, Abderrahman BA, Prioux J (2007b) Influence of exercise intensity on time spent at high percentage of maximal oxygen uptake during an intermittent session in young endurance-trained athletes. Eur J Appl Physiol 102:19–26

    Article  PubMed  Google Scholar 

  • Thiriet P, Gozal D, Wouassi D, Oumarou T, Gelas H, Lacour JR (1993) The effect of various recovery modalities on subsequent performance, in consecutive supramaximal exercise. J Sports Med Phys Fitness 33:118–129

    PubMed  CAS  Google Scholar 

  • Weltman A, Stamford BA, Moffatt RJ, Katch VL (1977) Exercise recovery, lactate removal, and subsequent high intensity exercise performance. Res Q 48:786–796

    PubMed  CAS  Google Scholar 

  • Wenger HA, Bell GJ (1986) The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 3(5):346–356

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge all the subjects for their participation in the study. We also wish to honor the memory of Delphine Thévenet by dedicating this article to her.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderraouf Ben Abderrahman.

Additional information

Communicated by David C. Poole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Abderrahman, A., Zouhal, H., Chamari, K. et al. Effects of recovery mode (active vs. passive) on performance during a short high-intensity interval training program: a longitudinal study. Eur J Appl Physiol 113, 1373–1383 (2013). https://doi.org/10.1007/s00421-012-2556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2556-9

Keywords

Navigation